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Abstract



In this study we focus on the role of the reallocation of
activity across individual producers for aggregate productivity
growth.  A growing body of empirical analysis yields striking
patterns in the behavior of establishment-level reallocation and
productivity.  Nevertheless, a review of existing studies yields
a wide range of findings regarding the contribution of
reallocation to aggregate productivity growth.

Through our review of existing studies and our own
sensitivity analysis, we find that reallocation plays a
significant role in the changes in productivity growth at the
industry level and that the impact of net entry is
disproportionate since entering plants tend to displace less
productive exiting plants, even after controlling for overall
average growth in productivity.  However, an important conclusion
of our sensitivity analysis is that the quantitative contribution
of reallocation to the aggregate change in productivity is
sensitive to the decomposition methodology employed.  Our
findings also confirm and extend others in the literature that
indicate that both learning and selection effects are important
in this context.

A novel aspect of our analysis is that we have examined the
role of reallocation for aggregate productivity growth to a
selected set of service sector industries.  Our analysis
considers the 4-digit industries that form the 3-digit industry
automobile repair shops.  We found tremendous churning in this
industry with extremely large rates of entry and exit.  Moreover,
we found that productivity growth in the industry is dominated by
entry and exit.  While these results should be viewed as
exploratory given the limited use to date of the non-
manufacturing establishment data at Census, the results are quite
striking and clearly call for further analysis.
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I.  Overview

Recent research using establishment and firm level data has raised a variety of conceptual



1  Empirical papers of relevance that focus on the connection between aggregate and
micro productivity growth include: (i) for the U.S.: Baily, Hulten and Campbell (1992), Baily,
Bartelsman and Haltiwanger (1996, 1997),  Bartelsman and Dhrymes (1994),  Dwyer (1995,
1997), Haltiwanger (1997), and Olley and Pakes (1996); (ii) for other countries: Tybout (1996),
Aw, Chen and Roberts (1997), Liu and Tybout (1996), and Griliches and Regev (1995).
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and measurement questions regarding our understanding of aggregate productivity growth.1  

Several key, related findings are of interest.  First, there is large scale, ongoing reallocation of

outputs and inputs across individual producers.  Second, the pace of this reallocation varies over

time (both secularly and cyclically) and across sectors.  Third, much of this reallocation reflects

within rather than between sector reallocation.  Fourth, there are large differentials in the levels

and the rates of growth of productivity across establishments within the same sector.  The rapid

pace of output and input reallocation along with differences in productivity levels and growth

rates are the necessary ingredients for the pace of reallocation to play an important role in

aggregate (i.e., industry) productivity growth.  However, our review of the existing studies

indicates that the measured contribution of such reallocation effects varies over time and across

sectors and is quite sensitive to measurement methodology.  An important objective of this paper

is to sort out the role of these different factors so that we can understand the nature and the

magnitude of the contribution of reallocation to aggregate productivity growth.

These recent empirical findings have been developed in parallel with an emerging

theoretical literature that seeks to account for the heterogeneous fortunes across individual

producers and to explore the role of such micro heterogeneity for aggregate productivity growth. 

This theoretical strand combined with the literature concerning the role of reallocation forms the

theoretical underpinning of this paper. Of course the idea that productivity growth in a market

economy invariably involves restructuring and reallocation across producers is not new.  For
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example, Schumpeter (p. 83, 1942) coined the term, “creative destruction”, which he described as

follows:

“The fundamental impulse that keeps the capital engine in motion comes from the new

consumers’ goods, the new methods of production and transportation, the new markets...[The

process] incessantly revolutionizes from within, incessantly destroying the old one, incessantly

creating a new one.  This process of Creative Destruction is the essential fact of capitalism.”

However, what is new in the emerging empirical literature is the growing availability of

longitudinal establishment level data that permit characterization and analysis of the reallocation

across individual producers within narrowly defined sectors and, in turn, the connection of this

reallocation to aggregate productivity growth. 

In this paper, we seek to synthesize and extend this emerging literature on the connection

between micro and aggregate productivity growth dynamics.  When we distill the empirical

findings we find that the measured quantitative contribution of the role of reallocation for

aggregate productivity growth varies significantly across studies.  Our objective is to understand

the sources of the differences in results across studies.  We pursue this objective in two ways. 

First, we compare the results carefully across studies taking note of differences on various

dimensions including country, sectoral coverage, time period, frequency, and measurement

methodology.  Second, we exploit establishment-level data for the U.S. manufacturing sector as

well as for a few selected service sector industries to conduct our own independent investigation

of the relevant issues.  The inclusion of service sector results is of particular interest since the

existing literature has almost exclusively focused on manufacturing industries.



2  This section draws heavily from Davis and Haltiwanger (1998).
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The paper proceeds as follows.  In section II, we provide a summary of  theories that can

account for the observed heterogeneous fortunes across establishments in the same narrowly

defined sector.  In addition, we consider the related theoretical literature on creative destruction

models of growth.  This brief discussion of theoretical underpinnings is of considerable help in

putting the results on the relationship between micro and macro productivity growth into

perspective.   In section III, we present a review and synthesis of the recent literature.  As already

noted above, there are significant differences in the quantitative findings across studies.  Section

IV presents a discussion of key measurement and methodological questions that can potentially

account for these differences.  In section V, we present a sensitivity and robustness analysis of

alternative measurement methodologies using establishment-level data for the U.S. manufacturing

sector.  Section VI presents new evidence on the relationship between micro and aggregate

productivity behavior using selected service sector industries.  Section VII provides concluding

remarks.

II.  Theoretical Underpinnings 

This section draws together theories and evidence related to the reasons for

cross-sectional heterogeneity in plant-level and firm-level outcomes.2  A pervasive empirical

finding in the recent literature  is that within sector differences dwarf between sector differences in

behavior.  For example, Haltiwanger (Table 1, 1997) shows that 4-digit industry effects account

for less than 10 percent of the cross-sectional heterogeneity in output, employment, capital

equipment, capital structures, and productivity growth rates across establishments. 

The magnitude of within-sector heterogeneity implies that idiosyncratic factors dominate
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the determination of which plants create and destroy jobs and which plants achieve rapid

productivity  growth or suffer productivity declines. An examination of the literature suggests that

plant-level heterogeneity may be accounted for by a mixture of: uncertainty; plant-level

differences in managerial ability, capital vintage, location and disturbances; and diffusion of

knowledge. Starting with the first cause, one likely reason for heterogeneity in plant-level

outcomes is the considerable uncertainty that surrounds the development, adoption, distribution,

marketing and regulation  of new products and production techniques. Uncertainty about the

demand for new products or the cost-effectiveness of alternative technologies encourages firms to

experiment with different technologies, goods and production facilities (Roberts and Weitzman,

1981). Experimentation, in turn, generates  differences in outcomes (Jovanovic, 1982 and Ericson

and Pakes, 1989). Even when incentives for experimentation are absent, uncertainty about future

cost or demand conditions encourages firms to differentiate their choice of current  products and

technology so as to optimally position themselves for possible future circumstances (Lambson,

1991).    

Another possible reason is that differences in entrepreneurial and managerial ability lead to

differences in job and productivity growth rates among firms and plants. These differences include

the ability to identify and develop new products,  to organize production activity, to motivate

workers, and to adapt to changing circumstances.  There seems little doubt that these and other

ability differences among managers generate much of the observed heterogeneity in plant-level

outcomes.  Business magazines, newspapers  and academic case studies (e.g., Dial and Murphy,

1995) regularly portray the decisions and actions of particular management teams or individuals as

crucial determinants of success or failure.  High levels of compensation, often heavily skewed



3  Many economic analyses attribute a key role to managerial ability in the organization of
firms and production units.   Lucas (1977), for example, provides an early and influential formal
treatment.
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toward various forms of incentive pay (Murphy, 1997), also suggest that senior managers play

key roles in many aspects of business performance, including productivity and job growth.3

Other factors that drive heterogeneity in plant-level productivity, output and input growth

outcomes involve plant- and firm-specific location and disturbances. For example, energy costs

and labor costs vary across locations, and so do the timing of changes in factor costs.   Cost

differences induce different employment and investment decisions among otherwise similar plants

and firms.  These decisions, in addition, influence the size and type of labor force and capital stock

that a business carries into the future. Thus, current differences in cost and demand conditions

induce contemporaneous  heterogeneity in plant-level job and productivity growth, and they also

cause businesses to differentiate themselves in ways that lead to heterogeneous responses to

common shocks in the future. The role of  plant-specific shocks to technology, factor costs and

product demand in accounting for the pace of job reallocation has been explored in Hopenhayn

(1992), Hopenhayn and Rogerson (1993), and Campbell (1997).  

Slow diffusion of information about technology, distribution channels, marketing

strategies, and consumer tastes is another  important source of plant-level heterogeneity in

productivity and job growth.  Nasbeth and Ray (1974) and Rogers (1983) document multi-year

lags in the diffusion of knowledge about new technologies among firms producing related

products.  Mansfield, Schwartz and Wagner (1981) and Pakes and Schankerman (1984)  provide



4  Knowledge diffusion plays a key role in many theories of firm-level dynamics, industrial
evolution, economic growth and international trade.  See, for example, Grossman and Helpman
(1991), Jovanovic and Rob (1989),  and Jovanovic and MacDonald (1994).

5See Aghion and Howitt  (1992), Caballero and Hammour (1994, 1996), Campbell
(1997), Stein (1997), Cooley, Greenwood and Yorokglu (1996), and Chari and  Hopenhayn
(1991)

6 Growth may be more or less than optimal since there are effects that work in opposite
directions.  On the one hand, appropriability and intertemporal spillover effects make growth
slower  than optimal. The appropriability effect derives from the fact that,  in their model, research
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evidence of long imitation and product development lags.4  

Part of the differences across plants may reflect the vintage of the installed capital. 5 

Suppose, for example, that new technology can only be adopted by new plants.   Under this view,

entering technologically sophisticated plants  displace older, outmoded plants and gross output

and input flows reflect a process of creative destruction.  A related idea is that it may not be the

vintage of the capital but rather the vintage of the manager or the organizational structure that

induces plant-level heterogeneity (see, e.g.,  Nelson and Winter, 1982). 

These models of plant-level heterogeneity are closely related to the theoretical growth

models emphasizing the role of creative destruction.  Creative destruction models of economic

growth stress that the process of adopting new products and new processes inherently involves

the destruction of old products and processes.  Creative destruction manifests itself in many 

forms. An important paper that formalizes these ideas is Aghion and Howitt (1992). They

consider a model of endogenous growth where endogenous innovations yield creative destruction. 

Specifically, the creator of a new innovation gets monopoly rents until the next innovation comes

along at which point the knowledge underlying the rents becomes obsolete.  The incentives for

investment in R&D and thus growth are impacted by this process of creative destruction.6 



on new innovations requires skilled labor as does the production of the intermediate goods where
new innovations  are implemented.  A fixed supply of skilled labor implies that skilled  labor earns
part of the returns from new innovations. The inability of the research firms to capture all of the
value from the innovations  reduces their incentives to conduct research.  The intertemporal 
spillover effect derives from the fact that current and future innovators derive  benefits (i.e.,
knowledge)  from past innovations but do not compensate past innovators for this benefit. The
fact that private research firms do not internalize the destruction of rents generated by their 
innovation works in the opposite direction.  This business stealing effect can actually yield too
high a growth rate. They also find, however, that the business stealing effect also tends to make 
innovations too small.    
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An alternative but related type of creative destruction growth model mentioned above as a

source of plant-level heterogeneity is the vintage capital model.  One form of these models

(Caballero and Hammour, 1994 and Campbell,  1997) emphasizes the potential role of entry and

exit.  If new technology can only be adopted by new establishments, growth occurs only via entry

and exit, which requires output and input reallocation.  An alternative view is that new technology

is embodied in new capital (e.g.,  Cooper, Haltiwanger, and Power, 1997), but that existing plants

can adopt new technology by retooling.  Under this latter view, both within plant and between

plant job reallocation may be induced by the retooling process.  For example, if there is skill

biased technical change, then the adoption of new technology through  retooling yields a change

in the desired mix  of skilled workers at an establishment.  Additionally, there may be an  impact

on the overall desired level of employment at the establishment.

 In all of these creative destruction models, the reallocation of outputs and inputs across 

producers plays a critical role in economic growth.  In these models, stifling reallocation stifles

growth.  It is important to emphasize, however, that there are many forces that may cause growth

and the pace of reallocation to deviate from optimal outcomes.  As mentioned above in the

context of Aghion and Howitt (1992), a generic problem is that agents (firms, innovators,



7  Indeed, Blanchard and Kremer (1997) argue that for transition economies, such holdup
problems are potentially severe  enough that the restructuring process is better described as  
"disruptive destruction" rather than creative destruction.
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workers)  do not internalize the impact of their actions on others.   In an analogous manner,

Caballero and Hammour (1996) emphasize that the  sunkness of investment in new capital  

implies potential ex post holdup problems that yield several harmful side effects.  They explore 

the hold-up problem generated by worker-firm  bargaining over wages after the firm's investment

in specific capital.7  A related point is that, even though reallocation may be vital for growth, there

are clear losers in the proces,  including the owners of the outmoded businesses that fail  as well

as the displaced workers. 

III.  Review of Existing Empirical Evidence

The theoretical literature on creative destruction as well as the underlying theories of

heterogeneity characterize technological change as a  noisy, complex process with considerable

experimentation (in terms of entry and retooling) and failure (in terms of contraction and exit)

playing integral roles.  In this section, we review the evidence from the recent empirical literature

that has developed in parallel with the theoretical literature.  We conduct this review in two parts:

first, we provide a brief review of the micro patterns of output, input and productivity growth;

second, we consider the aggregate implications of these micro patterns.  Our review of micro

patterns is brief since we regard the results discussed in this section as well-established and there

are excellent recent survey articles by Bartelsman and Doms (1997) and Caves (1997) that cover

much of the same material in more detail.  Moreover, it is the aggregate consequences of these

micro patterns that are more open to debate and, as we make clear, there are a number of

measurement issues that generate the variation that is found across studies on this dimension.



8 The calculations in Baldwin, Dunne, and Haltiwanger (1995) are an updated version of
earlier calculations by Dunne, Roberts and Samuelson (1989).  The five-year gross flows and the
shares accounted for by entry and exit are somewhat lower in the later work for equivalent
periods reflecting the improvement in longitudinal linkages in the Census of Manufacturers over
time.
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A.  Brief Review of Key Micro Patterns  

We begin our review by briefly summarizing a few key patterns that have become well-

established in this literature. Virtually all of the findings refer to manufacturing.  They are:  

Large scale reallocation of outputs and inputs within sectors: The rate of within-

sector reallocation of output and inputs is of great magnitude.  Davis and Haltiwanger (1998)

summarize much of the recent literature on gross job flows; they note that in the United States,

more that 1 in 10 jobs is created in a given year and more than 1 in 10 jobs is destroyed every

year.  Similar patterns hold for many other market economies.  Much of this reallocation reflects

reallocation within narrowly defined sectors.  For example, Davis and Haltiwanger (1998) report

that across a variety of studies only about 10 percent of reallocation reflects shifts of employment

opportunities across 4-digit industries.  

Entry and exit play a significant role in this process of reallocation.  For annual

changes, Davis, Haltiwanger and Schuh (1996) report that about 20 percent of job destruction

and 15 percent of job creation is accounted for by entry and exit.  For 5-year changes, Baldwin,

Dunne, and Haltiwanger (1995) report that about 40 percent of creation and destruction are

accounted for by entry and exit, respectively.8 

Persistent differences in levels of productivity.   There are large and persistent

differences in productivity across plants in the same industry (see Bartelsman and Doms (1997)

for an excellent discussion).  In analyzing persistence, many studies report transition matrices of
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plants in the relative productivity distribution within narrowly defined industries (see, e.g., Baily,

Hulten and Campbell (1992) and Bartelsman and Dhrymes (1994)).  These transition matrices

exhibit large diagonal and near-diagonal elements indicating that plants that are high in the

distribution in one period tend to stay high in the distribution in subsequent periods.  In contrast,

establishment-level productivity growth rates exhibit an important transitory component.   Baily,

Hulten and Campbell (1992) and Dwyer (1995) present strong evidence of regression to the mean

effects in productivity growth regressions.  

Low productivity helps predict exit:  Many studies (e.g., Baily, Hulten and Campbell

(1992),  Olley and Pakes (1996) and  Dwyer (1995)) find that the productivity level helps predict

exit.  Low productivity plants are more likely to exit even after controlling for other factors such

as establishment size and age.  A related set of findings is that observable plant characteristics are

positively correlated with productivity including size, age, wages, adoption of advanced

technologies, and exporting (see, e.g., Baily, Hulten and Campbell (1992), Doms, Dunne and

Troske (1996), Olley and Pakes (1996), Bernard and Jensen (1995)).  It has been more difficult to

find correlates of changes in productivity.  For example, Doms, Dunne and Troske (1996) find

that plants that have adopted advanced technologies are more likely to be high productivity plants

but that the change in productivity is only weakly related to the adoption of such advanced

technologies.

B.  Reallocation and Aggregate Productivity Growth

Empirical analysis of the implications of the pace of reallocation and restructuring for

productivity dynamics has been recently provided by Baily, Hulten, and Campbell (1992), Olley

and Pakes (1996), Bartelsman and Dhrymes (1994), Dwyer (1995, 1997) and Haltiwanger (1997)



9  Baldwin (1995) presents some related analysis of the contribution of plant turnover to
productivity growth for Canada but his methodology differs sufficiently from the rest of the
literature that it is not easy to integrate his work into this discussion.

10  In the case of Taiwan, a simple average (or simple median) of the industry-level results
reported in the Aw, Chen and Roberts (1997) paper is presented. 
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(1)

using plant-level manufacturing data from the U.S.;  Aw, Chen and Roberts (1997) using

firm-level data from Taiwan; Tybout (1996) and Liu and Tybout (1996) using data from

Columbia, Chile, and Morocco;  and Griliches and Regev (1995) using data from Israel.9 

Virtually of the studies consider some form of decomposition of an index of industry-level

productivity:

here  Pit is the index of industry productivity, set is the share of plant e in  industry i (e.g., output

share), and pet is an index of plant-level productivity.   

Using plant-level data, the industry index and its components can be constructed for

measures of labor and multifactor productivity.  Many studies have decomposed the time series

changes in aggregate (i.e., industry-level) productivity into components that reflect a within

component (holding shares fixed in some manner) and other effects that reflect the reallocation of

the shares across plants including the impact of entry and exit.  Table 1 presents a summary of

results from a variety of studies using different countries, time periods, frequency of measured

changes, productivity concepts (i.e., multifactor vs. labor) and measurement methodologies.10 
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The differences along these many dimensions make fine comparisons difficult so our objective in

considering the alternative studies is to consider broad patterns.  In the next section, we consider 

methodological issues in detail and then conduct our own sensitivity analysis.  For now, we

attempt to compare studies on dimensions that are relatively easy to compare.  

One core aspect that is roughly comparable across studies is the contribution of the within

plant contribution to aggregate productivity growth.  Even for this measure, there are differences

in the methodology along a number of dimensions.  These include whether the measure of

productivity is multifactor or labor, whether the share is based on output or employment weights,

and whether the share is based on the initial share at the base period or the average share

(averaged over base and end period). 

The fraction of within plant contribution to multifactor productivity growth ranges from

0.23 to 1.00 across studies, while the fraction of the within plant contribution to labor

productivity growth ranges from 0.79 to 1.20 across studies.  It is obviously difficult to draw

conclusions even in broad terms about whether the within plant contribution is large or small. The

variation across countries may reflect a variety of factors.  Nevertheless, careful examination of

the individual studies indicates that this variation is due in part to there being considerable

sensitivity to time period, frequency, and cross industry variation. 

To shed light on the sensitivity to business cycles and industry, Table 2 presents a few

selected results from different time periods and industries from the Baily, Hulten and Campbell

(1992) and Haltiwanger (1997) studies.  For the 1977-82 period, the within plant contribution for

manufacturing in general is negative for both studies reflecting the fact that, while there is modest

overall productivity growth over this period, its source is not the within plant component.  In



11  Baily, Bartelsman and Haltiwanger (1997) provide a more extensive analysis of the role
of reallocation for the cyclical behavior of productivity.
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contrast, for the 1982-87 period the within plant contribution is large and positive during a period

of robust productivity growth.  This apparent sensitivity to the business cycle (1982 was during a

severe slump in U.S. manufacturing) is interesting in its own right.  These results suggest that

overall productivity is less procyclical than within plant productivity.  The inference is that

reallocation effects tend to generate a countercyclical “bias” and thus recessions are times that the

share of activity accounted for by less productive plants decreases either through contraction or

exit11.  The more general point in the current context is that the within plant contribution varies

substantially with the cycle.

 Table 2 also shows that the results tend to vary dramatically by detailed industry.  Steel

mills (SIC 3312, Blast Furnaces) exhibit tremendous cyclicality in the behavior of productivity

while telecommunications equipment (SIC 3661, Telephone and Telegraph Equipment) does not. 

Moreover, the fraction accounted for by within plant changes is large and stable for

telecommunications and very large and variable for steel mills.

Given the discussion of theoretical underpinnings in section II, an obvious question is the

contribution of plant entry and exit to these aggregate productivity dynamics.  While many studies

consider this issue, the precise measurement of the contribution of net entry and exit is quite

sensitive to the decomposition methodology that is used.  This sensitivity, in turn, makes cross-

study comparisons of the contribution of net entry especially difficult.  Nevertheless, some aspects

of the underlying role of entry and exit can be directly compared across studies.  

Returning to Table 1, we see that one important factor is the horizon over which the



12  Although the earlier vintage arguments suggest that it may be that younger plants
should have higher productivity.  While such vintage effects may be present, the evidence clearly
suggests that the impact of selection and learning effects dominate.
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productivity growth is measured.  By construction, the share of activity accounted for by exits in

the base year and entrants in the end year are increasing in the horizon over which the base and

end year are measured.  At an annual frequency, we observe that the share of employment

accounted for by exits in the U.S. in the year t-1 is only 0.02 and by entrants in year t is only 0.01. 

In contrast, at a ten-year horizon, the share of employment accounted for by plants in the U.S. in

year t-10 that ultimately exit over the ten years  is 0.28 while the share of employment accounted

for by plants in year t that entered over the ten years  is 0.26.  These results imply that the

contribution of any differences in productivity between entering and exiting plants will be greater

for changes measured over a longer horizon.

The influence of the horizon also is likely to impact the observed productivity differences

between exiting plants in the base year and entering plants in the end year via selection and

learning effects.  That is, one year old plants are likely to have on average a lower productivity

than ten year old plants because of selection and learning effects.  Many studies (e.g., Olley and

Pakes (1996), Liu and Tybout (1996), Aw, Chen and Roberts (1997)) present results suggesting

that selection and learning effects play an important role.  The results in Table 1 reflect this in that

the relative productivity of entering plants in the end year to exiting plants in the base year is

increasing for changes measured over a longer horizon.12

Putting these results on entry and exit together helps account for the finding that studies

that focus on high frequency variation (e.g., Baily, Bartelsman and Haltiwanger (1997) and

Griliches and Regev (1995)) tend to find a small contribution of net entry to aggregate



13  The first term in this decomposition (the “within component”) is identical to that in
Baily, Hulten and Campbell (1992).  They essentially combined the second two terms by
calculating a term based upon the sum of changes in shares of activity weighted by ending period
productivity.  In addition, they did not deviate the terms in the between and net entry terms from
initial levels.  As Haltiwanger (1997) points out, this implies that even if all plants have the same
productivity in both beginning and end periods, the between component and the net entry
component in the Baily, Hulten and Campbell decomposition will, in general, be nonzero.  See
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productivity growth while studies over a longer horizon find a large role for net entry (e.g., Baily,

Bartelsman and Haltiwanger (1996), Haltiwanger (1997), and Aw, Chen and Roberts (1997)).  

We return to this theme in subsequent sections.

Overall, however, the fact remains that it is difficult to assess the contribution of

reallocation to productivity growth by a simple comparison of results across studies.  Obviously,

part of the reason for this is that the results across studies are from different countries, time

periods, frequencies, and sectoral coverage.  Indeed, exploiting the variation along these

dimensions would be useful to shed light on the factors that yield variation in the contribution of

reallocation to productivity growth.  However, part of the reason for the differences across

studies reflects differences in the decomposition methodology across studies.  To disentangle

these differences, we conduct our own analysis and consider in detail the sensitivity of results to

alternative measurement methodologies.  We now turn our attention to this sensitivity analysis.     

IV.  Measurement and Methodological Issues

A.  Alternative Decomposition Methodologies

To illustrate the sensitivity to measurement methodology, we consider two alternative

decomposition methodologies.  The first decomposition method (denoted method 1 in what

follows) we consider is a modified version of that used by Baily, Hulten, and Campbell (1992) and

is given by:13



Haltiwanger (1997) for further discussion.
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(2)

 

where C denotes continuing plants, N denotes entering plants, and X denotes exiting plants. The

first term in this decomposition represents a within plant component based on plant-level changes,

weighted by initial shares in the industry.  The second term represents a between-plant component

that reflects changing shares, weighted by the deviation of initial plant productivity from the initial

industry index.  The third term represents a cross (i.e.,covariance-type)  term.  The last two terms

represent the contribution of entering and exiting plants, respectively.  

In this decomposition, the between-plant term and the entry and exit terms involve

deviations of plant-level productivity from the initial industry index.  For a continuing plant, this

implies that an increase in its share contributes positively to the between-plant component only if

the plant has higher productivity than average initial productivity for the industry.  Similarly, an

exiting plant contributes positively only if the plant exhibits productivity lower than the initial

average, and an entering plant contributes positively only if the plant has higher productivity than

the initial average.  

This decomposition differs somewhat from others that have appeared in the literature in

some subtle but important ways.   Key distinguishing features of the decomposition used here are: 

(i) an integrated treatment of entry/exit and continuing plants; (ii) separating out within and

between effects from cross/covariance effects.  Some of the decompositions that appear in the
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(3)

literature are more difficult to interpret because they do not separate out cross/covariance effects. 

For example, some measure the within effect as the change in productivity weighted by average

shares (in t and t-k -- see method 2 below).  While the latter method yields a seemingly cleaner

decomposition, it also allows the within effect to partially reflect reallocation effects since it

incorporates the share in period t.  Another problem is in the treatment of net entry.  Virtually all

of the decompositions in the literature that consider net entry measure the contribution of net

entry via the simple difference between the weighted average of entrants and exiting plants

productivity.  Even if there are no differences in productivity between entering and exiting plants,

this commonly used method yields the inference that net entry contributes positively to an increase

(decrease) in productivity growth if the share of entrants is greater (less than) the share of exiting

plants.  There are related (and offsetting) problems in the treatment of the contribution of

continuing plants.

While this first method is our preferred decomposition, measurement error considerations

suggest an alternative decomposition closely related to that used by Griliches and Regev (1995). 

Consider, in particular, the following alternative decomposition (denoted method 2 in the

remainder of this paper):

where a bar over a variable indicates the average of the variable over the base and end year.  In

this decomposition, the first term is interpretable as a  within effect that is measured as the

weighted sum of productivity with the weights equal to the average (across time) shares. The



14  This discussion focuses on simple classical measurement error.  There may be other
forms of non-random measurement error that are important in this context. 
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second is interpretable as a between effect where the changes in the shares are indexed by the

deviations of the average plant level productivity from the overall industry average.  In a like

manner, the net entry terms are such that entry contributes positively as long as entering plants are

higher than the overall average and exiting plants are lower than the overall average.  

This second decomposition method is a modification of the standard within/between

decomposition that is often used for balanced panels.  The disadvantage of this method is that the

measured within effect will now reflect in part cross/covariance effects (as will the measured

between effect).  However, this second method is apt to be less sensitive to measurement error in

outputs or inputs relative to the first method as shown in equation (2).  Suppose, for example, we

are considering labor productivity (e.g., output per manhour) and that there is random

measurement error in measured manhours.  Measurement error of this type will imply that plants

in a given period with spuriously high measured manhours will have spuriously low measured

productivity.  Such measurement error will yield a negative covariance between changes in

productivity and changes in shares (measured in terms of manhours) and a spuriously high within

plant effect under method 1.  In a similar manner, consider the decomposition of multifactor

productivity using output weights.  Random measurement error in output will yield a positive

covariance between productivity changes and changes in shares and a spuriously low within plant

effect under method 1.  In contrast, the measured within effect from method 2 will be less

sensitive to random measurement error in output or inputs since the averaging across time of the

shares will mitigate the influence of measurement error.14
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(4)

An alternative cross-sectional decomposition methodology utilized by Olley and Pakes

(1996) is of interest as well.  Consider the following cross sectional decomposition of productivity

for an industry in period t (denoted method 3 in what follows):

where in this case a bar over a variable represents the cross-sectional (unweighted) mean across

all plants in the same industry.  The second term in this decomposition provides insights into

whether activity (e.g., output or employment depending on how shares are measured) is

disproportionately located at high productivity plants.  In addition, by examining the time series

pattern of each of the terms in this decomposition we can learn whether the cross-sectional

allocation of activity has become more or less productivity enhancing over time.  One advantage

of this cross-sectional approach is that the cross-sectional differences in productivity are more

persistent and less dominated by measurement error and transitory shocks.  A related advantage is

that this cross-sectional decomposition does not rely on accurately measuring entry and exit. 

Both of these problems potentially plague the time series decompositions using method 1 or

method 2 (although method 2 has some advantages in terms of measurement error).  Of course,

examining the time series patterns of the cross-sectional decomposition does not permit

characterizing the role of entry and exit.

Clearly each of these techniques has notable strengths and weaknesses.  Given the

measurement concerns we have raised and given the independent interest in each of these

alternative methodologies, we present results from each of the three methods in the analysis that

follows.
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B.  Measurement of Output, Inputs and Productivity Using the Census of Manufactures

In the next section, we present evidence applying the alternative decomposition

methodologies using plant-level data from the Census of Manufactures.  A number of different but

related versions of the decompositions are considered.  First, we consider the decomposition of

industry-level multifactor productivity where the shares (set) are measured using plant-level gross

output.  This weighting methodology is common in the recent literature investigating such

multifactor productivity decompositions  (see, e.g., Baily, Hulten and Campbell (1992),

Bartelsman and Dhrymes (1994), Olley and Pakes (1996), Aw, Chen and Roberts (1997)).  Next,

we consider a decomposition of industry-level labor productivity using both gross output and

employment share weights.  For labor productivity, the seemingly appropriate weight is

employment (or manhours) since this will yield a tight measurement link between most measures

of labor productivity using industry-level data and industry-based measures built up from

plant-level data.  Both the Griliches and Regev (1995) and Baily, Bartelsman, and Haltiwanger

(1996) papers use employment weights in this context. However, as we shall see, using gross

output weights as an alternative provides useful insights into the relationship between multifactor

and labor productivity decompositions and, in so doing, on the role of reallocation in productivity

growth.

The index of plant-level multifactor productivity used here is similar to that used by Baily,

Hulten and Campbell (1992).  The index is measured as follows: 

where Qet is real gross output, Let is labor input (total hours), Ket is real capital (in practice



15  We also performed the labor productivity analysis using value-added per unit of labor. 
The results using this alternative measure in terms of the decompositions and relative productivity
are very similar to those we report in the subsequent sections.  
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separate terms are included for structures and equipment), and Met is real materials. Outputs and

inputs are measured in constant (1987) dollars.  Factor elasticities are measured via industry cost

shares. The index of plant-level labor productivity is measured as the difference between log gross

output and log labor input.15  Using this measurement methodology with equation (1) yields

industry-level growth rates in productivity that correspond closely to industry-level growth rates

constructed using industry-level data.

The Census of Manufactures (CM) plant-level data used in the analysis includes 

information on shipments, inventories, book values of equipment and structures, employment of

production and nonproduction workers, total hours of production workers, and cost of materials

and energy usage.  For the most part (exceptions noted below), the measurement methodology

closely follows that of Baily, Hulten, and Campbell (1992).  Real gross output is measured as

shipments adjusted for inventories, deflated by the four-digit output deflator for the industry in

which the plant is classified.  All output and materials deflators used are from the four-digit

NBER Productivity Database (Bartelsman and Gray, 1996, recently updated by Bartelsman,

Becker and Gray).  Labor input is measured by total hours for production workers plus an

imputed value for the total hours for nonproduction workers.  The latter imputation is obtained by

multiplying the number of nonproduction workers at the plant (a collected data item)  times the

average annual hours per worker for a nonproduction worker from the Current Population

Survey.  We construct the latter at the 2-digit industry level for each year and match this



16  The methodology for constructing this hours variable is discussed at length in Davis
and Haltiwanger (1991).  We have also used an alternative estimate of total hours, like that in
Baily, Hulten and Campbell, which is total hours for production hours multiplied by the ratio of
total payroll for all workers plus payments for contract work to payroll for production workers. 
This latter multiplication factor acts as a means for accounting for both hours of nonproduction
and contract workers.  The correlation between these alternative hours measures is 0.95 at the
plant level.  Moreover, the results for the aggregate decompositions and other exercises are very
similar using the alternative measures.  However, we did find that the use of this ratio adjusted
hours measure yielded somewhat more erratic results in comparing results using only Annual
Survey of Manufactures (ASM) cases to all Census of Manufactures (CM) cases.  In particular,
we found substantial differences in results between those generated from the full CM and the
ASM when considering decompositions of  labor productivity per hour.  We did not have this
type of deviation for any of the other measures (e.g., multifactor productivity and labor
productivity per worker) when using the CPS-based hours method.  
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information to the CM by year and industry.16   Materials input is measured as the cost of

materials deflated by the 4-digit materials deflator.  Capital stocks for equipment and structures

are measured from the book values deflated by capital stock deflators (where the latter is

measured as the ratio of the current dollar book value to the constant dollar value for the two-

digit industry from Bureau of Economic Analysis data).  Energy input is measured as the cost of

energy usage, deflated by the Gray-Bartelsman energy-price deflator.  The factor elasticities are

measured as the  industry average cost shares, averaged over the beginning and ending year of the

period of growth.  Industry cost shares are generated by combining industry-level data from the

NBER Productivity Database with the Bureau of Labor Statistics (BLS) capital rental prices.  

The CM does not include data on purchased services (other than that measured through

contract work) on a systematic basis (there is increased information on purchased services over

time).  Baily, Hulten, and Campbell used a crude estimate of purchased services based on the two-

digit ratio of purchased services-to-materials usage available from the Bureau of Labor Statistics

KLEMS data.  They applied the two-digit ratio from the aggregate KLEMS data to the plant level



17  Siegel and Griliches (1991) also find a relatively modest role for purchased services in
their study of manufacturing productivity growth.
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data on materials.  Because they reported that this adjustment did not matter much and it is at best

a crude adjustment that will not provide much help in decomposing productivity growth within

four-digit industries, this adjustment was not incorporated in the analysis.17 

The data used are from the mail universe of  the CM for 1977 and 1987.  In the CM, very

small plants (typically fewer than five employees)  are excluded from the mail universe and

denoted administrative record cases.   Payroll and employment information on such very small

establishments are available from administrative records (i.e., the Standard Statistical

Establishment List) but the remainder of their data are imputed.  Such administrative record cases

are excluded from the analysis.  In addition to the usual problems in using book-value data, for

plants that were not in the Annual Survey of Manufactures (about 50,000-70,000 plants) but in

the mail universe of the CM,  book-value data are imputed in years other than 1987.   We

investigated this issue (and like Baily, Hulten, and Campbell) found little sensitivity on this

dimension.  This partly reflects the relatively small capital shares in total factor costs when

materials are included.  Nevertheless, for the exercises presented in the next section, we

considered results using both the full CM (less administrative records) and results generated from

the ASM plants.  Note that to do this properly, we used the CM files to identify entering, exiting

and continuing plants and then considered the ASM subsample of each of those files and applied

appropriate ASM sample weights.  We only report the results for the full CM since the results are

quite similar using the full CM and the ASM only cases.  Part of the preference for the full CM in

this context is that net entry plays an important role and the measurement of the aggregate



18This methodology entails defining plant-level growth rates as the change divided by the
average of the base and end year variable.  The advantage of this growth rate measure is that it is
symmetric for positive and negative changes and allows for an integrated treatment of entering
and exiting plants. 
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contribution of entry and exit is likely to be more reliable using the full CM.

V.  Results for the U.S. Manufacturing Sector

We begin by characterizing results on the U.S. manufacturing sector over the 1977 to

1987 period.  We focus on this interval since it comes close to reflecting changes on a peak-to-

peak basis.  In the second subsection, we consider various five-year intervals which tend to be

dominated more by cyclical variation in productivity. In the third subsection, we look at net entry

in more detail. The last subsection summarizes the results.

A.  Ten-year changes -- Basic Decompositions 

Table 3 presents estimates of the gross expansion and contraction rates of employment,

output and capital (structures and equipment) over the 1977-87 period.  The rates of output and

input expansion (contraction)  are measured as the weighted average of the growth rates of

expanding (contracting) plants including the contribution of entering (exiting) plants using the

methodology of Davis, Haltiwanger and Schuh (1996). 18  The pace of gross output and input

expansion and contraction is extremely large over the ten-year horizon.  Expanding plants yielded

a gross rate of expansion of more than 40 percent of outputs and inputs and contracting plants

yielded a gross rate of contraction in excess of 30 percent of outputs and inputs.  Net growth rate

of output is higher than that of inputs (especially employment) reflecting the productivity growth

over this period.  A large fraction of the output and input gross creation from expanding plants

came from entry and a large fraction of the output and input gross destruction came from exit.  
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Table 3 also includes the fraction of excess reallocation within 4-digit industries in each of

these industries.  Excess reallocation is the sum of gross expansion and contraction rates less the

absolute value of net change for the sector.  Thus, excess reallocation reflects the gross

reallocation (expansion plus contraction) that is in excess of that required to accommodate the net

expansion of the sector.  Following Davis, Haltiwanger and Schuh (1996) (see pages 52 and 53

for a description of the methodology) excess reallocation rates at the total manufacturing level can

be decomposed into within and between sector effects.  The far right column of Table 3 indicates

that most of the excess reallocation at the total manufacturing level reflects excess reallocation

within 4-digit industries.  Thus, the implied large shifts in the allocation of employment, output

and capital are primarily among producers in the same 4-digit industry.  

The large within sector reallocation rates motivate our analysis of productivity

decompositions at the 4-digit level. We apply the decompositions in equations (2) and (3) at the

4-digit level.  In most of our results, we report the results for the average industry.  Following

Baily, Hulten, and Campbell (1992),  the weights used to average across industries are average 

nominal gross output, averaged over the beginning and ending years of the period over which the

change is measured.  The same industry weights are used to aggregate the industry results across

all of the decompositions since the our focus is on within-industry decompositions so the results

do not reflect changing industry composition.

Consider first the decomposition of industry-level multifactor productivity reported in

Table 4 for the 1977-87 period.   For method 1, the within component accounts for about half of

average industry productivity growth, the between-plant component is negative but relatively

small, and the cross term is positive and large accounting for about a third of the average industry



19 We look at method 3 at the end of this subsection.
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change. Net entry accounts for 26 percent of the average industry change.  For method 2, the

within component accounts for 65 percent of average industry productivity growth, the between

component 10 percent, and net entry 25 percent.19  The comparison across methods for

multifactor productivity suggests that the impact of net entry is robust across methods but

inferences regarding the contribution of reallocation among continuing plants vary widely across

methods.  We return to considering the reasons for this below after we consider the labor

productivity decompositions.

The decompositions of labor productivity are reported in Table 4 as well.  For labor

productivity at the establishment level we consider two alternative measures: output per manhour

and output per worker and the results of the two metrics are similar.   To aggregate across

establishments in the same industry, we consider two alternatives as well: output weights and

labor input weights. When we use output weights, we only report the results for output per

manhour since the results are very similar to those for output per worker.  In the following

discussion we focus on the distinction between results based on output weights and those

obtained using labor weights (either employment or manhours).

Interestingly, labor and output shares yield approximately the same overall average

industry growth rates in labor productivity over this period.  Also, the contribution of net entry is

quite similar whether labor or output shares are used or whether method 1 or method 2 is used. 

Thus, in either case, reallocation plays an important role (at least in an accounting sense) in labor

productivity growth via net entry.

The biggest difference between the results obtained with the output and employment
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weights occurs in the continuing plant category under method 1.   The decomposition of labor

productivity using gross output share weights looks very similar to the multifactor productivity

decomposition in that the respective roles of within, between, and cross effects are quite similar. 

When labor shares are used as weights as opposed to output shares,  the within plant component

of labor productivity growth is much larger.  In addition, with labor weights, there is relatively

little contribution from the between and covariance terms.  This finding of a large within-plant

contribution for labor productivity using labor weights is similar to the findings in Griliches and

Regev (1995) and Baily, Bartelsman, and Haltiwanger (1996).  The labor weighted results imply

that for continuing plants, much of the increase in labor productivity would have occurred even if

labor shares had been held constant at their initial levels. 

For method 2, the differences between the results using labor or output weights are

substantially diminished.  Indeed, under method 2, the results obtained under alternative

productivity measures (multifactor or labor) or alternative weights (output, manhours or

employment) are very similar.  These results suggest that more than 60 percent of average

industry productivity growth can be accounted for by within plant effects, less than 10 percent by

between plant effects and more than 25 percent by net entry.

An obvious question raised by these findings is: what underlies the differences between

method 1 and method 2?  To shed light on the differences in results across methods, Table 5

presents simple correlations of the plant-level growth rates in multifactor productivity, labor

productivity, output, employment,  equipment and structures.  These correlations are based upon

the 1977-87 changes for continuing plants.  Multifactor productivity and labor productivity

growth are strongly positively correlated.  Not surprisingly, output growth and input growth are
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highly positively correlated (especially output and employment growth).  Nevertheless, while

output growth is strongly positively correlated with both multifactor and labor productivity

growth, employment and capital growth are virtually uncorrelated with multifactor productivity

growth.  There is a positive correlation between capital growth and labor productivity growth and

an even stronger positive correlation between capital intensity growth (the growth in capital per

unit of labor) and labor productivity growth.  The negative correlation between labor productivity

growth and labor input growth underlie the negative cross terms in the decompositions of labor

productivity using employment or manhours weights.  In an analogous manner, the positive

correlations between productivity (multifactor or labor) growth and output growth  underlie the

positive cross terms in the decompositions using output weights.

A number of factors are at work in generating these patterns; analyzing these factors will

help us disentangle the differences in the results between methods 1 and 2.  The first potential

factor is measurement error, the second factor concerns changes in factor intensities.  As

discussed in section IV,  measurement error will generate a downward bias in the correlation

between productivity growth and employment growth and an upward bias in the correlation

between productivity growth and output growth.  Likewise, measurement error will yield a

spuriously low (high) within plant share for multifactor (labor) productivity growth using method

1.  The patterns in Table 4 and 5 are consistent with such influences of measurement error. 

Moreover, the seemingly consistent results across productivity measures using method 2 suggests

that method 2 is effective in mitigating these measurement error problems.  Recall that method 2

uses averages across time to generate the appropriate aggregation “weights” for the changes in

productivity and changes in activity shares and this averaging will tend to mitigate problems from
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measurement error.

While it is tempting to conclude that measurement error is driving the differences between

methods 1 and 2 and thus method 2 should be preferred, there are alternative explanations of the

observed patterns.  First, the differences between methods 1 and 2 are systematic for alternative

measures of productivity.  In particular, the results for labor productivity per hour are very similar

to those using labor productivity per worker.  Since employment and shipments are measured

relatively well (in comparison to, say, hours), the latter productivity measure should be the least

affected by measurement error but we do not see a different pattern for this measure.  Perhaps

more importantly, there are reasons why the patterns of labor productivity and multifactor

productivity should be different.

Recall that Table 5 shows a strong positive correlation between labor productivity growth

and capital intensity growth.  Moreover, there is a positive correlation between plants with

initially high labor shares and growth in capital intensity (their correlation is 0.14) suggesting that

changes in capital intensity may be associated with the large within plant contribution for labor

productivity under method 1.  That is, plants with large changes in capital intensity also exhibit

large changes in labor productivity and also have large initial labor shares. These factors together

contribute to a large within plant share under method 1 for labor productivity.  Note as well that

changes in capital intensity need not be tightly linked to changes in multifactor productivity which

is indeed the case as seen in Table 5. Viewed from this perspective, method 2 may be masking

important differences in the patterns of labor and multifactor productivity.  Recall that the

conceptual problem with method 2 is that the within term confounds changes in plant level

productivity with changes in shares of activity.  The within plant component for labor productivity
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is lessened because the change in labor productivity is aggregated using average instead of initial

labor shares and thus mitigates the relationship between changes in capital intensity and labor

productivity (and initial shares).   

To help differentiate between the measurement error and productivity-enhancing changes

in factor intensities, it is useful to consider evidence for some individual industries.  Consider, for

example, the steel industry (SIC 3312).  As documented in Davis, Haltiwanger and Schuh (1996),

the steel industry underwent tremendous restructuring over the 1970s and the 1980s.   A large

part of this restructuring involved the shifting from integrated mills to mini mills.  While

substantial entry and exit played a major role, the restructuring of the industry also involved the

retooling of many continuing plants.   Baily, Bartelsman, and Haltiwanger (1996) present evidence

that continuing plants in the steel industry downsized significantly over this period of time and

exhibited substantial productivity gains (i.e., there is a large negative covariance between

employment changes and labor productivity changes among the continuing plants in the steel

industry).  As reported in Davis, Haltiwanger and Schuh, the average worker employed at a steel

mill worked at a plant with 7000 workers in 1980 and only 4000 workers by 1985.  Moreover,

this downsizing was associated with large subsequent productivity gains in the steel industry (see,

e.g., Figure 5.8 in Davis, Haltiwanger and Schuh (1996)).  These patterns are reflected in the

decompositions we have generated underlying Table 4.  For SIC 3312, for example, we find that

growth in  labor productivity per hour is 29.7 for the 1977-87 period and the within component

using method 1 accounts for 93 percent.    Consistent with the view that the downsizing was

productivity enhancing in this industry we find a negative cross term of 23 percent.  In addition,

capital intensity growth in the steel industry is positively correlated with changes in labor



20  It is worth noting, as well, that the within component using method 1 accounts for 87
percent of the growth in multifactor productivity in this industry. 
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productivity at the plant level with a correlation of 0.26.  Taken together, these patterns paint a

picture of many plants changing their factor intensities in dramatic ways and this in turn being

reflected in the growth in labor productivity.20 

As the discussion of the steel industry illustrates, the patterns we observe in the cross

terms in the decompositions for method 1 using alternative weights are potentially driven by part

of a within plant restructuring process that yields substantial productivity gains.  More generally,

these results suggest that the connection between measured reallocation of inputs, outputs and

productivity growth is quite complex.  Plants are often changing the mix of inputs at the same

time they change the scale of production.  Some technological innovations (e.g., minimills) may

lead to substantial downsizing by plants that adopt the new technology.  Alternatively,

technological innovations may take the form of cost savings or product quality enhancements that

enable successfully adopting plants to increase their market share with accompanying expansion.

Results using the cross-sectional decomposition (method 3) are reported in Table 6.  We

conducted this decomposition separately for every 4-digit industry using multifactor productivity

with output weights, labor productivity per hour using manhour weights and labor productivity

per worker using employment weights.  The reported results are the average industry results

where the weighted average across industries uses the same industry weights as those used in

Table 4.  There is a positive second term for all productivity measures for all years indicating that

plants with higher productivity have higher output and labor shares in their industry.   For each of

the measures, overall productivity increases between 1977 and 1987.  The decomposition reveals
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that this reflects both an increase in the unweighted mean productivity across plants and an

increase in the cross term for the average industry.  This latter finding indicates that the

reallocation of both outputs and labor inputs between 1977 and 1987 has been productivity

enhancing.

B.  Five-year Changes: 1977-82, 1982-87 and 1987-92

For the five year changes in industry-level productivity, we consider a subset of the

exercises considered in the prior section.  In particular, we consider the time series

decompositions using methods 1 and 2 for the five-year changes measured from 1977-82, 1982-

87 and 1987-92.  The productivity measures we consider are multifactor productivity using gross

output weights in the decompositions and labor productivity per hour using manhour weights in

the decompositions.

The results of these decompositions are reported in Table 7.  Cyclical variation in

productivity growth plays a dominant role in the overall patterns.  Productivity growth is

especially modest in the 1977-82 period and very strong in the 1982-87 period.  Using method 1,

the multifactor productivity and labor productivity decompositions yield quite different stories,

especially for the periods that are roughly coincident with cyclical downturns.  For example, for

the 1977-82 period, the within share is actually negative for the multifactor productivity

decomposition while the within share is above one for the labor productivity decomposition. 

Associated with these dramatically different within plant contributions are very different cross

terms.  For the multifactor productivity decomposition, the cross term is positive and relatively

large (above one) and for the labor productivity decomposition, the cross term is negative and

relatively large (above one in absolute magnitude). 



21  It is useful to note that the large contribution of net entry to productivity growth in
1977-82 and 1987-92 is not due to an especially large share of activity accounted for by entering
and exiting plants but rather by a large gap in productivity between entering and exiting plants
relative to the overall growth in productivity.  For example, for the 1987-92 period, the share of
output of exiting plants in 1987 is only 0.13 and the share of output of entering plants in 1992 is
only 0.12.  However, the difference in productivity between entering and exiting plants is about 7
percent which is substantially greater than the 3.3 percent overall growth in productivity over this
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In contrast, method 2 yields results that are much less erratic across multifactor and labor

productivity and across the alternative subperiods.  Even here, however, the contribution of

within plant changes to multifactor productivity ranges from about 50 percent in cyclical

downturns to about 80 percent in cyclical upturns.

What underlies these very different patterns?  Table 8 sheds light on this issue by

characterizing the simple correlations for continuing establishments.  The correlation between

productivity growth (either multifactor or labor) and output growth is large and positive while the

correlation between labor productivity and manhours growth is large and negative.  These

correlations and the implied patterns in the decompositions likely reflect a variety of cyclical

phenomena and associated measurement problems.  For example, cyclical changes in factor

utilization will yield spurious changes in measured productivity to the extent that the changes in

utilization are poorly measured.

In short, the high frequency results are difficult to characterize since the contribution of

various components is sensitive to decomposition methodology, the measurement of multifactor

versus labor productivity, and to time period.  However, a couple of patterns are robust.  First,

the contribution of net entry is robust to the alternative measurement methods.  Second, while the

contribution of net entry is sensitive to time period, the pattern is regular in the sense that the

contribution of net entry is greater in cyclical downturns.21  Third, using the method more robust
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to measurement error problems (method 2), the contribution of reallocation amongst continuing

plants is also greater in cyclical downturns.  Putting these pieces together yields the interesting

inference that the contribution of reallocation to productivity growth tends to be greater during

cyclical downturns.     

C.  The Role of Entry and Exit 

As noted in the previous subsections, a robust result is the contribution of net entry. 

Whether we examine ten-year or five-year changes, net entry plays an important role in

accounting for aggregate productivity growth.  We begin our detailed examination of the role of

entry and exit by returning to the ten-year changes for 1977-87.  Panel A of Table 9 provides

information about some of the underlying determinants of the role of net entry by reporting output

and labor shares of entering and exiting plants and the weighted average of productivity levels for

continuing, entering and exiting plants.  The reported productivity indexes are relative to the

weighted average for continuing plants in 1977.  Entering plants tend to be smaller than exiting

plants, as reflected in the generally smaller output and employment shares of entrants (relative to

exiting plants).  Entering plants in period t (here 1987) tend to have higher productivity than the

level of productivity in period t-k (here 1977) for exiting and continuing plants, but entrants

exhibit slightly lower productivity than continuing plants in period t.   Exiting plants from period

t-k tend to have lower productivity than continuing plants in period t-k.  

One insight that emerges from comparing  panel A of Table 9 to the results of Table 4 is

that the contribution of entering plants displacing exiting plants to productivity growth is

disproportionate relative to the respective contribution of entry and exit in accounting for activity. 
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For example, the contribution of net entry to multifactor productivity is 25 percent while the share

of output accounted for by exiting plants is 22 percent and the share of activity accounted for by

entering plants is 21 percent.  Similar patterns of disproportionality are observed for labor

productivity.  The disproportionate contribution of net entry reflects the fact that the gap in

productivity between entering and exiting plants is larger than the gap across time among

continuing plants.  This finding is important because it indicates that the contribution of net entry

is not simply an accounting result.  That is, if entry and exit were just random and uncorrelated

with productivity, then the contribution of net entry would simply reflect the share of activity

accounted for by entering and exiting plants.    

It is, of course, limiting to simply compare the relative productivity of entering plants in

1987 with exiting plants in 1977.  The differences reflect many factors including overall

productivity growth, selection and learning effects.  To begin shedding light on these issues, the

lower panel of Table 9 considers the relative productivity of the entering plants in 1987 based

upon a cross classification of the year of entry.  Given the availability of economic census data in

1982, entry age can be measured for all entering establishments in terms of census cohorts (i.e.,

1978-82 or 1983-87).  For multifactor productivity, we find that in 1987 the relative productivity

of the older cohort is higher (1.10) than the younger cohort (1.07).  For labor productivity using

manhours or employment a similar pattern is observed.  These findings are consistent with the

predicted impact of selection and learning effects but still are inadequate for understanding the

underpinnings of the contribution of net entry.  Following methodology used by Aw, Chen and

Roberts (1997),  we can make a bit more progress in distinguishing between alternative factors

using some simple regression analysis to which we now turn.



22  By pooling the data across industries, we are pursuing a slightly different approach than
in prior decomposition exercises where we calculated the decomposition for each industry and
then took the weighted average of the 4-digit results.  However, by controlling for 4-digit effects
and using analogous weights to those used in the decomposition exercises, these results are close
to being the regression analogues of earlier tables.  The results using unweighted regressions are
qualitatively similar to those reported here with similar significance levels for the various tests on
coefficients.  Moreover, for multifactor productivity, the magnitudes of the coefficients are very
similar using unweighted regressions.  For the labor productivity results, the magnitudes are
smaller for the unweighted results.  We suspect that this is because the typical entering and exiting
plant is smaller and less capital intensive than the typical continuing plant.  Since there is a
positive relationship between size, capital intensity and labor productivity, this will yield larger
differences in average productivity levels between continuing, entering and exiting plants using
weighted as opposed to unweighted regressions.
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Table 10 presents regression results using the pooled 1977-87 data.  The upper panel

considers a simple regression of the (log) of productivity on a set of dummies indicating whether

the plant exited in 1977, entered in 1987, a year effect to control for average differences in

productivity across the two years, and 4-digit industry dummies (not reported).22   The omitted

group is continuing plants in 1977 so the coefficients can be interpreted accordingly.  This first set

of results simply confirm earlier results but help in quantifying statistical significance: exiting

plants have significantly lower productivity (multifactor and labor) than continuing plants, plants

in 1987 have significantly higher productivity (multifactor and labor) than plants in 1977, and

entering plants in 1987 have lower labor productivity than the continuing plants in 1987.  Note

that according to these regressions there is no statistical difference between continuing plants and

entering plants in terms of multifactor productivity in 1987.  Also reported in the upper panel is

the F-test on the difference between entering and exiting plants which is highly significant for all

measures, even after having controlled for year effects.    

The lower panel of Table 10 is the regression analogue of the lower panel of Table 9. 

Essentially the same specification as in the upper panel is used except that here we classify



23  This specification is quite similar to various specifications considered in Aw, Chen and
Roberts (1997).  Our results are qualitatively consistent with theirs in the sense that we find that
both learning and selection effects contribute significantly to the observed plant-level productivity
differentials.
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entering plants based on whether they entered between 1977-82 or 1982-87. The results indicate

that there are significant differences between the cohorts of plants.  The plants that entered earlier

have significantly higher productivity (multifactor or labor) than plants that entered later.  

The lower panel of Table 10 still does not permit disentangling selection and learning

effects.  In Table 11, we report results that shed some light on these different effects.23  In Table

11, we use a similar pooled specification with year effects, entry dummy, exit dummy and 4-digit

effects.  However, in this case we consider additional information about plants that entered

between 1972-77.  By dividing this entering cohort into exiters and survivors, we can characterize

selection and learning effects.  In particular, we make three comparisons using this information.

First, for exits, we distinguish among exits those who entered between 1972-77 and those who

did not (comparing " and (). Second, we distinguish among the entering cohort those that exit

and those that survive to 1987 (comparing " and 2). Finally, for the surviving 1972-77 cohort,

we also examine productivity in 1977 (the entering year) and productivity ten years later

(comparing 2 and 8).    

Plants that entered between 1972-77 and then exited are significantly less productive in

1977 than continuing incumbents in 1977 (who are not from that entering cohort) whether

productivity is measured in terms of multifactor or labor productivity ("<0).   Of exiting plants,

those that entered between 1972-77 are less productive in 1977 than other exiting plants ("<(),

although the results are not statistically significant for multifactor productivity . The exiting plants



24  All specifications include 4-digit industry effects, year effects, and entry and exit
dummies.  Table 13 is analogous to Table 11; we decompose some of these effects allowing for
potentially different behavior of the most recent entering cohort.

25  That is, for the 1977-82 changes we consider the 72-77 entering cohort, for the 1982-
87 changes we consider the 77-82 entering cohort, and for the 87-92 changes we consider the 82-
87 entering cohort.
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from this entering cohort are also less productive in 1977 than the surviving members of this

cohort ("<2), although the differences are not statistically significant for the multifactor

productivity measure even at the 10 percent level.   The latter findings are broadly consistent with

selection effects since it is the less productive plants from the entering cohort that exit (although

again not always highly significant).  

Even the surviving members of the entering 1972-77 cohort are less productive than

incumbents (2<0).  However, for the entering cohort, we observe significant increases in

productivity over the ten years (2<8), even though we are controlling for overall year effects.  

This pattern is consistent with learning effects playing an important role.

To conclude this section, we consider similar regression exercises for the five-year

changes from 1977-82, 1982-87 and 1987-92.24  Tables 12 and 13 report regression results for

these five-year intervals.  Interestingly, the patterns for the five-year changes regarding the

differences between entering and exiting plants and the role of selection and learning effects mimic

those for the ten-year changes.  In Table 12, we observe that entering plants have higher

productivity than exiting plants even while controlling for year effects.  In Table 13, we examine

the behavior of the entering cohorts for each of the five-year changes.25  With one exception for

plants that exit, the plants that are in the entering cohort have lower productivity than other plants

("<().  For the entering cohort, the productivity level in the year of entry is lower for those that
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immediately exit than those that survive ("<2).  For those that survive in the entering cohort, we

observe significant increases in productivity even after controlling for average increases in

productivity amongst all plants via year effects (2<8).  One interesting feature of these results is

that the differences reflecting both selection and learning effects are highly significant for both

multifactor and labor productivity measures.

In sum, we find that net entry contributes disproportionately to productivity growth.  The

disproportionate contribution is associated with less productive exiting plants being displaced by

more productive entering plants.  New entrants tend to be less productive than surviving

incumbents but exhibit substantial productivity growth.  The latter reflects both selection effects

(the less productive amongst the entrants exit) and learning effects.

  D.  Summing Up the Results for Manufacturing

To sum up the results from this sensitivity analysis, our results suggest that reallocation

plays a significant role in the changes in productivity growth at the industry level.  While

measurement error problems cloud the results somewhat, two aspects of the results point clearly

in this direction.  First, our time series decompositions show a large contribution from the

replacement of less productive exiting plants with more productive entering plants when

productivity changes are measured over five or ten year horizons.  A key feature of these findings

is that the contribution of net entry is disproportionate -- that is, the contribution of net entry to

productivity growth exceeds that which would be predicted by simply examining the share of

activity accounted for entering and exiting plants.  Second, the  cross-sectional decompositions,

which are less subject to measurement error problems, uniformly show that the reallocation of

both output and labor inputs has been productivity enhancing over this same period.  
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Nevertheless, an important conclusion of this sensitivity analysis is that the quantitative

contribution of reallocation to the aggregate change in productivity is sensitive to the

decomposition methodology that is employed.  Using a method that characterizes the within plant

contribution in terms of the weighted average of changes in plant multifactor (labor, when using

labor weights) productivity using fixed initial weights yields a substantially lower (higher) within

plant contribution than an alternative method  that uses the average time series share of activity as

weights.  The former method (method 1) arguably yields cleaner conceptual interpretations but is

also more subject to measurement error.  The latter method (method 2) yields results that are

more consistent across multifactor and labor productivity measures.  Examining the detailed

components of the decompositions across multifactor and labor productivity measures yields

results consistent with measurement error interpretations and, on this basis, favor method 2 that

mitigates measurement error problems.  However, some aspects of the patterns (in particular, the

strong correlation between within plant changes in labor productivity and capital intensity)

suggest that there are likely important and systematic differences in the contribution of

reallocation to labor and multifactor productivity.

VI.  Productivity and Reallocation in the Service Sector

A.  Overview and Measurement Issues

All of the studies we have reviewed, as well as our analysis of the sensitivity of the results

to alternative methodologies, have been based on productivity decompositions using

manufacturing data.  In this section, we consider the same issues in the context of changes in



26Given that these data have not been widely used, the results reported here should be
viewed as exploratory and interpreted with appropriate caution.  

27  See the paper by Dean and Kunze (1992) on service sector productivity measurement.
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productivity in a service sector industry.  We restrict our attention here to a small number of 4-

digit industries that account for the 3-digit industry automotive repair shops (SIC 753).  Our

focus on this 3-digit industry is motivated by several factors.  First, since this is one of the first

studies to exploit the Census of Services establishment-level data at the Bureau of the Census, we

wanted to conduct a study on a relatively small number of 4-digit industries to permit careful

attention to measurement issues.26  Second, for this specific 3-digit industry, we can apply

procedures for measuring plant level labor productivity (here measured as gross output per

worker) in a manner that is directly comparable to official BLS methods.  That is, for this specific

industry, BLS generates 4-digit output per worker measures by using gross revenue from the

Census of Service industries and then deflating the 4-digit revenue using an appropriate 4-digit

deflator derived from the Consumer Price Index.27  By obtaining the appropriate deflators, we can

mimic BLS procedures here which is especially important given our concerns about measurement

issues.

A third reason that we selected this specific 3-digit industry is that this industry has been

subject to rapid technological change.  Over the last decade or so, the automotive repair industry

has experienced significant changes in the nature and complexity of both the automobiles being

serviced and in the equipment used to perform the service.  According to Automotive Body

Repair News (ABRN), “...vehicles are becoming more electronic and require more expensive

diagnostic tools for successful troubleshooting.”  For example, ABRN reports that the percentage
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of automobiles with electronic transmissions has increased from 20% in 1990 to 80% in 1995 and

is expected to increase to 95% by the year 2000.  According to ABRN, “this growth in

automotive electronics has not only changed the vehicle, it has altered significantly the technical

requirements of the individuals who service” the automobiles.

Recent improvements in automobiles and in the manner in which they are repaired may

interfere with our measurement of changes in output per worker.  It is possible that we may not

accurately characterize productivity changes in the industry because of changes in the quality of

both the outputs and the inputs.  While we recognize that this pervasive concern may be especially

problematic in the service sector, we believe that these problems will be somewhat mitigated by

several factors unique to this context.  First, our (admittedly limited) research on changes in this

industry indicate that process innovations dominate product innovations.  That is, while both the

parts and processes to repair automobiles have undergone substantial improvement, we believe

that the improvements in repair technology are more important for our purposes.  For example,

some of the largest changes have taken place in the field of troubleshooting and have provided

mechanics with the ability to more accurately and more quickly diagnose repair problems.  Such

improvements in diagnostics are appropriately reflected in our (and the official BLS) output per

worker measures since establishments that are better at diagnosis will exhibit higher measured

output per worker.  Second, our focus is on the decomposition of productivity changes rather

than the overall change itself.  Mismeasured quality change will undoubtedly imply that the overall

change in mismeasured, but it is less clear how it will distort the inferences about the contribution

of reallocation to the overall change. 

We conduct our analysis by exploiting the Census of Service establishment-level data from
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1987 and 1992.  The Census of Service data contain information on gross revenue and

employment as well as a set of establishment-level identifiers.  The data on gross revenue are

deflated with an appropriate 4-digit deflator to generate a measure of real gross output (in 1987

dollars).  Combining the data on real gross output with the employment data allows us to generate

measures of labor productivity that are fully comparable to those presented in section V.

Before proceeding to our analysis of the micro data, it is useful to consider the official

BLS productivity series for SIC 753.  Figure 1 plots the index for output per worker produced by

BLS.  As is evident from the figure, this industry exhibits substantial cyclicality in labor

productivity.  This cyclicality likely influences our analysis since we focus on the Census of

Services micro data from 1987 to 1992.  Figure 1 indicates that while recovery had begun in 1992

and that 1992 labor productivity exceeds 1987 labor productivity, labor productivity was below

the cyclical peak it had reached in 1989.  Recall from the discussion in sections III and IV that 

the role of reallocation for productivity growth appears to be cyclically sensitive for studies using

manufacturing data.  We need to keep the impact of cyclicality in mind therefore, when

considering the determinants of industry-wide productivity growth.

Our first step in using the Census of Services establishment-level data is to employ a flag

used by the Census Bureau in their tabulation of the non-manufacturing censuses to identify

observations containing inappropriate data (for example, out-of-scope establishments).  These

observations are excluded from tabulations for official Census publications and we eliminated

them from our analysis as well.  In addition, we excluded a small number of observations with

duplicate permanent plant numbers (PPN) in each year that could not be matched with alternative

matching routines.  Our initial files closely approximated both the number of establishments and
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total employment contained in official Census Bureau publications.

The biggest challenge that we face in using the Census of Service data for this purpose is

linking the establishment data over time and measuring the contributions of entry and exit to both

employment changes and productivity growth.  To accomplish this, we match the micro data files

using PPNs that the Bureau of the Census assigns to establishments.  In principle, PPNs are

supposed to remain fixed even during changes in organization or ownership.  However, the actual

assignment of PPNs is far from perfect.  During the construction of the Longitudinal Research

Database (LRD) which encompasses the CM and ASM, many PPN linkage problems were

detected through analyses of the data by many different individuals (see the appendix of Davis,

Haltiwanger and Schuh (1996) for more discussion on PPN linkage problems in the LRD).

Since the service sector data have not previously been linked together over time or

analyzed in this manner, it is undoubtedly the case that initial attempts at linking the data that rely

only on PPNs will leave a greater number of longitudinal linkage problems than remain in the

LRD.  Therefore, we took an additional step to improve the matches and used additional

identifiers on the files (i.e., Census File Numbers and Employer Identification Numbers). 

Unfortunately, even after this step, an exploratory analysis of births and deaths for a specific zip

code shows that a small but important fraction of the births and deaths reflected changes in

ownership for an establishment that continued to operate at the same location in the same

industry.

To overcome the remaining linkage problems, we use the name and address information in

the files and a sophisticated matching software (Automatch) to improve the matches.  Most data

processing software takes a very literal approach to this sort of information, thus limiting its value



28 Two types of errors are unavoidable in this process.  First, some ‘true’ matches will not
be made and some ‘false’ matches will be.  Our review of the individual records indicates that  the
overall error rate is, nevertheless, substantially diminished
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for matching purposes.  For example, if an establishment’s name is ‘K Auto Mart Inc.’ in one file

and has the exact same name in the other, the two records will match.  However, if in the second

year the establishment’s name is ‘K Auto Mart Incorporated’ it will not match the previous record

if linked using conventional software because the two entries are not exactly the same.  Clearly,

abbreviations, misspellings, and accidental concatanations can substantially reduce the usefulness

of these fields for matching purposes if literal matches are required.

However, the software we used is designed to recognize many alternative specifications

for the same name and address.  That is, it can recognize that abbreviations such as “St” that

frequently appear in addresses may stand for “Saint” as in “St James Street” or “Street” as in

“Saint James St.”  The software assigns probability-based weights to the set of potential matches

and the user determines the cut-off value of the weights that gives him the best set of ‘valid’

matches.28

Panel A of Table 14 shows that by using this technique we are able to reduce the number

of unmatched establishments in the 1987 file by about 17.6% and the number of unmatched

establishments in the 1992 file by about 13.3%.  Notice also that the mean size (employment) of

the additional matched establishments is much closer to that of the original matched cases than it

is to the remaining unmatched establishments.

Panel B of Table 14 shows the effects of the additional matches on the five-year gross

employment flows statistics.  Both the positive and negative flows are about 10% lower after

using Automatch than when the only plant identifier numbers are used.  This percentage decrease



29Given the magnitude of establishment births and deaths on employment flows and
productivity, and the newness of these data, we considered it prudent to try to find benchmarks
for business failure from sources outside the Census Bureau.  We contacted BABCOX
Publications, publishers of several automobile service periodicals.  BABCOX provides its
publications free of charge to all companies in, among others, SIC 7532 (Top, Body, and
Upholstery Repair Shops and Paint Shops) and they believe that they have a mailing list that
includes almost all of the individual establishments in the industry.  They find that about 10% of
the businesses on their mailing list disappear each year.  Over a five year period therefore, their
attrition rate is similar to what we find.
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is less than the percent decrease in the number of unmatched establishments since matched

establishments often generate positive or negative job flows, though obviously of a lesser

magnitude than those generated by spurious entrants and exits.  Overall, we consider the

application of the matching software to be successful and this bodes well for future longitudinal

database development using the non-manufacturing establishment data at Census.

B.  Decompositions of Industry Productivity Changes

We now turn our attention to an analysis of the decomposition of aggregate productivity

growth for the automobile repair industry.  To begin, Table 15 presents gross expansion and

contraction rates for employment and output for the overall 3-digit industry and the underlying 4-

digit industries.  The gross flows of employment and output are quite large in this industry with

five-year gross expansion and contraction rates of approximately 50 percent.  The implied five-

year excess reallocation rates for each industry are often above 80 percent.  These rates are quite

large relative to the ten-year gross rates for manufacturing reported in Table 3.  Indeed for

manufacturing, five-year gross employment expansion and contraction rates are typically less than

30 percent (see, e.g., Dunne, Roberts and Samuelson (1989) and Baldwin, Dunne, and

Haltiwanger (1995)).  Thus, taken at face value, these rates suggest tremendous churning among

automotive repair shops.29
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In a related manner, the share of expansion accounted for by entrants and the share of

contraction accounted for by exits are both extremely large.   The entry and exit shares exceed 50

percent for all industries and in some cases exceed 80 percent.  To provide some perspective,

Baldwin, Dunne, and Haltiwanger (1995) report that roughly 40 percent of five-year gross job

flows in U.S. manufacturing are accounted for by entrants and exits.  

Table 16 presents the gross contraction and expansion rates by establishment size class

along with information regarding the distribution of establishments by size class.  The vast

majority of automotive repair shops are very small with less than 10 employees.  This helps

account for the rapid pace of output and employment reallocation and the dominant role of

entrants and exits.  Many studies (see the survey in Davis and Haltiwanger (1997)) have shown

that the pace of reallocation as well as entry/exit rates are sharply decreasing functions of

employer size.

Table 17 presents the decomposition of labor productivity (per worker) growth using

method 1 (panel A) and method 2 (panel B) described in section IV.  The components in these

tables are reported directly (essentially the terms in equations (2) and (3)) rather than as shares of

the total as in prior tables.  We present them in this form to avoid confusion.  The components

exhibit considerable variation in both sign and magnitude so the shares of the total often exceed

one.  For the overall 3-digit industry, we find that net entry plays a very large role regardless of

the method is used.  Indeed, productivity growth from net entry actually exceeds the overall

industry growth.  Thus, the overall contribution of continuing establishments is negative.  The

decomposition of the effects of continuing establishments differs substantially across methods 1

and 2.  The reason for this is that there is an extremely large negative cross effect with method 1. 
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With method 1, the within and between effects using method 1 are typically positive.  In contrast,

under method 2, the within effect is uniformly negative and the between effect is typically

positive.  Correlations for continuing establishments are reported in Table 18.  Underlying the

cross terms in Table 17 are the large positive correlation between labor productivity growth and

output growth and the large negative correlation between labor productivity growth and

employment growth  

Since the time series decompositions are sensitive to measurement error problems and

longitudinal linkage problems, it is useful to also examine the Olley-Pakes style cross sectional

decompositions.  Table 19 reports these cross sectional decompositions for 1987 and 1992.  The

cross term for all industries is positive indicating that the share of employment is greater at

establishments with larger productivity.  The cross term is especially important for the overall 3-

digit industry and also its biggest single 4-digit industry, general automotive repair shops (SIC

7538).  In addition, for the overall 3-digit industry as well as for general automotive repair shops,

there is an increase in the cross term reflecting the fact that the reallocation of employment over

this time has been productivity enhancing.

C.  The Role of Entry and Exit

The results in the prior section indicate that in an accounting sense essentially all (indeed

more than all) of the productivity growth in these industries comes from net entry.  Table 20

illustrates the underlying determinants of the contribution of net entry.  Several features of Table

20 stand out.  First, the shares of employment accounted for by exiting plants in 1987 and by

entering plants in 1992 are very large.  Second, continuing plants exhibit little overall change  in
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productivity.  Third, entering plants in 1992 actually have somewhat lower productivity than the

incumbents had in 1987 but they have much larger productivity than the exiting plants had in

1987.  Thus, the biggest impact comes from the large exodus of low productivity plants.

In an analogous manner to the regression exercises in section IV, Table 21 characterizes

the differences between entering and exiting plants more formally.  The specification includes year

effects, 4-digit industry effects (not shown), entry and exit dummies.  Even after controlling for

year effects (and thus overall trends in productivity growth in the industry), exiting plants have

significantly lower productivity than continuing plants, entering plants have significantly lower

productivity than continuing plants, and entering plants have significantly higher productivity than

exiting plants.  

D.  Summary of Service Sector Results

Since the Census of Services micro data have not been widely used, this analysis and the

findings should be viewed as exploratory.   Nevertheless, taken at face value the results are quite

interesting and clearly call for further analysis.  First, there is tremendous reallocation of activity

across these service establishments with much of this reallocation generated by entry and exit.  

Second, the productivity growth in the industry is dominated by entry and exit effects.  The

primary source of productivity growth between 1987 and 1992 for the automobile repair shop

industry is accounted for by the exit of very low productivity plants.  

VII.  Concluding Remarks

In this study we have focused on the role of the reallocation of activity across individual

producers for aggregate productivity growth.  A growing body of empirical analysis yields

striking patterns in the behavior of establishment-level reallocation and productivity.  First, there
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is a large ongoing pace of reallocation of outputs and inputs across establishments.  Second, the

pace of reallocation varies secularly, cyclically and by industry.  Third, there are large and

persistent productivity differentials across establishments in the same industry.  Fourth, entering

plants tend to have higher productivity than exiting plants.  Large productivity differentials and

substantial reallocation are the necessary ingredients for an important role for reallocation in

aggregate productivity growth.  Nevertheless, a review of existing studies yields a wide range of

findings regarding the contribution of reallocation to aggregate productivity growth.

Through our review of existing studies and our own sensitivity analysis, we find that the

variation across studies reflects a number of factors.  For one, the contribution of reallocation

varies over time (is cyclically sensitive) and across industries.  Second, the details of the

decomposition methodology matter and our findings suggest that measurement error problems

interact with the alternative decomposition methodologies. Third, the contribution of net entry

depends critically on the horizon over which the changes are measured.  Small shares of the role

of entrants and exits in high frequency data (e.g., annual) make for a relatively small role of

entrants and exits using high frequency changes.  However, intermediate and longer run (e.g., five

and ten year) changes yield a large role for net entry.  Part of this is virtually by construction since

the share of activity accounted for by entry and exit will inherently increase the longer the horizon

over which changes are measured.  Nevertheless, a robust finding is that the impact of net entry is

disproportionate since entering plants tend to displace less productive exiting plants, even after

controlling for overall average growth in productivity.  The gap between the productivity of

entering and exiting plants also increases in the horizon over which the changes are measured

since a longer horizon yields greater differentials from selection and learning effects.  Our findings
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confirm and extend others in the literature that indicate that both learning and selection effects are

important in this context.

A novel aspect of our analysis is that we have extended the analysis of the role of

reallocation for aggregate productivity growth to a selected set of service sector industries.  Our

analysis considers the 4-digit industries that form the 3-digit industry automobile repair shops. 

This is an industry that has been experiencing dramatic change over the last decade or so through 

the increasing use of advanced technology in both automobiles as well as in the equipment used to

service them.  We found tremendous churning in this industry with extremely large rates of entry

and exit.  Moreover, we found that productivity growth in the industry is dominated by entry and

exit.  In an accounting sense, the primary source of productivity growth in this industry over the

1987 to 1992 period is the exit of very low productivity plants.  While these results should be

viewed as exploratory given the limited use to date of the non-manufacturing establishment data

at Census, the results are quite striking and clearly call for further analysis.

There are a large number of open issues that deserve further attention.  One issue that we,

and most of the literature, neglect is the role of within sector price dispersion and related issues of

product differentiation.  Following the literature, we use 4-digit deflators for shipments and

materials in the construction of our productivity measures.  However, a limited number of studies

(e.g., Roberts and Supina (1997)) find considerable price dispersion across establishments even

within narrow 7-digit product classes.  If the price dispersion reflects quality differences across

the products produced by different establishments, then the common procedures in the literature

are such that measured productivity differences across establishments will reflect such quality

differences.  A related and more serious problem is the extent to which price dispersion reflects
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product differentiation implying that we need both a richer characterization of market structure

and the information on this market structure to proceed appropriately.

Another problem is that much that we have discussed in this paper is simply accounting. 

To understand the role of reallocation for productivity growth, we need to provide better

connections between the theoretical underpinnings in section II and the variety of empirical results

summarized in the succeeding sections.  For one, we need to come to grips with the determinants

of  heterogeneity across producers.  There is no shortage of candidate hypotheses but currently

this heterogeneity is mostly a residual with several claimants.  For another, we need to develop

the theoretical structure and accompanying empirical analysis to understand the connection

between output and input reallocation.  The results to date suggest that this connection is quite

complex with restructuring and technological change yielding changes in the scale and mix of

factors that are not well understood.  A related problem is that there is accumulating evidence that

the adjustment process of many of these factors is quite lumpy so the dynamics are quite

complicated.

To close, there is at least one clear implication of this analysis.  High quality micro data on

establishments that permit measurement of output, input and productivity growth at the

establishment level and aggregation of these growth rates on a consistent basis over time are

essential for understanding the determinants of aggregate productivity growth.  This point

suggests that a comprehensive and integrated approach to the collection and processing of data on

establishments is important.  Ideally, we would like to measure outputs, inputs and associated

prices of outputs and inputs at the establishment-level in a manner that permits the analysis of 

aggregate productivity growth in the manner discussed in this paper.  Current practices at
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statistical agencies are far from this ideal with many of the components collected by different

surveys with different units of observation (e.g., establishments vs. companies) and indeed by

different statistical agencies.  Given the apparently important role of reallocation for aggregate

productivity growth, our understanding of the determinants of aggregate productivity growth will

remain limited without making progress on these data collection and processing issues.    



54

REFERENCES

Aghion, Philippe, and Peter Howitt. “A Model of Growth Through Creative Destruction,” 
Econometrica, 60(2), 1992, 323-351.

Aw, Bee Yan, Xiaomin Chen,  and Mark J. Roberts. “Firm-Level Evidence on Productivity
Differentials, Turnovers, and Exports in Taiwanese Manufacturing,” NBER Working
Paper No. 6235, 1997.

Baily, Martin Neil, Eric J. Bartelsman and John Haltiwanger. “ Downsizing and Productivity
Growth:  Myth or Reality?”  Small Business Economics, 8, 1996, 259-278.

Baily, Martin Neil, Eric J. Bartelsman and John Haltiwanger.   “Labor Productivity: Structural
Change and Cyclical Dynamics,” NBER Working Paper No. 5503, revised 1997.

Baily, Martin Neil, Charles Hulten and David Campbell.  “Productivity Dynamics in
Manufacturing Plants,” Brookings Papers on Economic Activity: Microeconomics, 1992,
187-249.

Baldwin, John R. “Turnover and Productivity Growth” in Baldwin,  The Dynamics of Industrial
Competition, Cambridge: Cambridge University Press, 1995, 208-38.

Baldwin, John R., Tim Dunne and John Haltiwanger. “Plant Turnover in Canada and the United 
States,” in Baldwin (ed.),  The Dynamics of Industrial Competition, Cambridge:
Cambridge University Press, 1995, 119-52.

Bartelsman, Eric. J.,  “Using Microdata for Economic Research and Policy Analysis,” unpublished
manuscript, Central Planning Bureau, Netherlands, 1995.

Bartelsman, Eric J., and Mark Doms, “Understanding Productivity: Lessons from Longitudinal
Micro Datasets,” mimeo, 1997.

Bartelsman, Eric J., and Wayne Gray.   “The NBER Manufacturing Productivity Database,”
NBER Technical Working Paper No. 205, 1996.

Bartelsman, Eric J., and Phoebus J. Dhrymes.   “Productivity Dynamics: U.S. Manufacturing
Plants, 1972-86,” Board of Governors of the Federal Reserve Board, Finance and
Economics Discussion Series, No. 94-1, 1994.

Bernard, Andrew B., and J. Bradford Jensen. “Exceptional Exporter Performance: Cause, Effects,
or Both?” mimeo, 1995.



55

Blanchard, Olivier, and Michael Kremer. “Disorganization,” Quarterly Journal of Economics,
1997.

Caballero, Ricardo, and Mohamad Hammour.  “The Cleansing Effects of Recessions,” American
Economic Review,  84(5), 1994, 1356-68.  

Caballero, Ricardo, and Mohamad Hammour. “On the Timing and Efficiency of Creative
Destruction,” Quarterly Journal of Economics, 111(3), 1996, 805-852.

Campbell, Jeffrey R.  "Entry, Exit, Technology, and Business Cycles," NBER Working Paper No.
5955, 1997.

Caves, Richard E. “Industrial Organization and New Findings on the Turnover and Mobility of
Firms,” working paper, Harvard University, 1997.

Chari, V.V., and Hugo Hopenhayn. “Vintage Human Capital, Growth, and the Diffusion of New 
Technology,” Journal of Political Economy, 99 (6), 1991, 1142-65.

Cooley, T., J. Greenwood and M. Yorukoglu.   "The Replacement Problem," working paper,
University of Rochester, 1996.

Cooper, Russell,  John Haltiwanger and Laura Power.  "Machine Replacement and the Business
Cycle: Lumps and Bumps," NBER Working Paper No. 5260, revised 1997.

Davis, Steven J., and John Haltiwanger.  “Wage Dispersion Between and Within U.S.
Manufacturing Plants, 1963-86,” Brookings Papers on Economic Activity,
Microeconomics, 1991, 115-20.

Davis, Steven J., and John Haltiwanger. “Gross Job Flows,” in Ashenfelter and Card
 (eds.), Handbook of Labor Economics, 1998, (forthcoming).

Davis, Steven J., John C. Haltiwanger and Scott Schuh. Job Creation and Destruction,
Cambridge: MIT Press, 1996.

Dean, Edwin R., and Kent Kunze. “Productivity Measurement in Service Industries,” in Output
Measurement in the Service Sector, Chicago: University of Chicago Press for NBER,
1992, 73-101.

Dial, Jay, and Kevin J. Murphy. “Incentives, Downsizing, and Value Creation at General
Dynamics,” Journal of Financial Economics, 37, 1995, 261-314.

Doms, Mark, and Timothy Dunne.  "Capital Adjustment Patterns in Manufacturing Plants," 
Center for Economic Studies Working Paper, CES 94-11, 1994.



56

Doms, Mark, Timothy Dunne and Kenneth Troske.  "Workers, Wages, and Technology,"
Quarterly Journal of Economics, 112, 1996, 253-90.

Dwyer, Douglas. “Technology Locks, Creative Destruction, and Non-Convergence in
Productivity Levels” Center for Economic Studies Working Paper, CES 95-6, 1995.

Dwyer, Douglas. “Productivity Races I: Are Some Productivity Measures Better Than Others?” 
Center for Economic Studies Working Paper, CES 97-2, 1997.

Dunne, Timothy, Mark Roberts and Larry Samuelson. “Plant Turnover and Gross Employment 
Flows in the U.S. Manufacturing Sector,” Journal of Labor Economics, 7(1), 1989, 48-
71.

Ericson, Richard, and Ariel Pakes. “An Alternative Theory of Firm and Industry Dynamics,”
Discussion Paper 445, Columbia University, September 1989.

Ericson, Richard, and Ariel Pakes.  “Markov-Perfect Industry Dynamics: A Framework for
Empirical Work,” Review of Economic Studies, 62(1) 1995, pp. 53-82.

Griliches, Zvi.   “Productivity, R&D, and the Data Constraint,”American Economic Review, 
84(1), 1994, 1-23.

Griliches, Zvi, and Haim Regev. “Productivity and Firm Turnover in Israeli Industry: 1979-1988,”
Journal of Econometrics, 65, 1995, 175-203.

Grossman, Gene M., and Elhanan Helpman, Innovation and Growth in the Global Economy, 
Cambridge: MIT Press, 1991.

Haltiwanger, John. “Measuring and Analyzing Aggregate Fluctuations: The Importance of
Building from Microeconomic Evidence, “ Federal Reserve Bank of St. Louis Economic Review,
January/February, 1997.

Hopenhyn, Hugo. “Entry, Exit, and Firm Dynamics in Long Run Equilibrium,” Econometrica,
60(5), 1992, 1127-50.

Hopenhyn, Hugo, and Richard Rogerson. “Job Turnover and Policy Evaluation: A General
Equilibrium Approach,” Journal of Political Economy, 101(5), 1993, 915-38.

Jovanovic, Boyan.  “Selection and the Evolution of Industry,”Econometrica, 50(3), 1982, 649-
70.

Jovanovic, Boyan, and Glenn M. MacDonald.  “Competitive Diffusion,” Journal of Political
Economy, 102 (1) 1994, 24-52.



57

Jovanovic, Boyan, and Rafael Rob. “The Growth and Diffusion of Knowledge,” Review of
Economic Studies, 56, 569-82.

Lambson, Val E. “Industry Evolution with Sunk Costs and Uncertain Market Conditions,”
International Journal of Industrial Organization, 9(2), 1991, 171-96.

Liu, Lili, and James R. Tybout. “Productivity Growth in Chile and Columbia: The Role of Entry,
Exit and Learning,” in Roberts and Tybout (eds.), Industrial Evolution in Developing
Countries: Micro Patterns of Turnover, Productivity and Market Structure, New York: 
Oxford University Press for the World Bank, 1996, 73-103.

Lucas, Robert E.  “On the Size Distribution of Business Firms,” Bell Journal of Economics,
9(Autumn), 1977, 508-23.

Mansfield, Edwin, Mark Schwartz and Samuel Wagner. “Imitation Costs and Patents,” Economic
Journal, 91, 1981, 907-918.

McGuckin, Robert H.  “Establishment Microdata for Economic Research and Policy Analysis:
Looking Beyond the Aggregates,” Journal of Economics and Business Statistics, 13(1), 1995,
121-6.

Murphy, Kevin J. “Pay, Performance, and Executive Compensation,” in Ashenfelter and Card
(eds.), Handbook of Labor Economics, 1997, forthcoming.

Nasbeth, Lars, and George Ray (eds.),  The Diffusion of New Industrial Processes: An
International Study, 1974, Cambridge: Cambridge University Press.

Nelson, Richard R., and Sidney G. Winter. An Evolutionary Theory of Economic Change, 1982, 
Cambridge, MA: Harvard University Press.

Olley, G. Steven, and Ariel Pakes.   “The Dynamics of Productivity in the Telecommunications 
Equipment Industry,” Econometrica, 64(6), 1996, 1263-1297.

Pakes, Ariel, and Mark Schankerman. “The Rate of Obsolescence of Patents, Research Gestation
Lags, and the Private Rate of Return to Research Resources,” in Griliches (ed.), R&D,
Patents, and Productivity,  Chicago: University of Chicago Press for NBER, 1984.

Roberts, Mark J., and Dylan Supina. “Output Price and Markup Dispersion in Micro Data: The
Roles of Producer and Heterogeneity and Noise,” Center for Economic Studies
Discussion Paper, CES 97-10, 1997.



58

Roberts, Kevin, and Martin L. Weitzman. “Funding Criteria for Research, Development, and
Exploration Projects,” Econometrica, 39, 1981, 1261-88.

Rogers, Everett M. Diffusion of Innovations (3rd ed.),  New York: Free Press, 1983.

Schumpeter, J.A. Capitalism, Socialism, and Democracy,  New York: Harper and Brothers,
1942.

Siegel, Donald, and Zvi Griliches. “Purchased Services, Outsourcing, Computers and Productivity
in Manufacturing,” NBER Working Paper No. 3678, 1991.

Stein, Jeremy. “Waves of Creative Destruction: Firm-Specific Learning-by-Doing and the
Dynamics of Innovation,” Review of Economics and Statistics, 4(2), 1997, 265-288.

Trager, Mitchell L., and Richard A. Moore.   “Development of a Longitudinally-Linked
Establishment Based Register, March 1993 through April 1995,” U.S. Bureau of the
Census Working Paper, 1995.

Tybout, James R. “Heterogeneity and Productivity Growth: Assessing the Evidence” in Roberts
and Tybout (eds.), Industrial Evolution in Developing Countries: Micro Patterns of
Turnover, Productivity, and Market Structure,  New York: Oxford University Press for
the World Bank, 1996, 43-72.



Table 1.  A Comparison of Decompositions of Aggregate Productivity Growth

A.  Multifactor Productivity Decompositions

Country Frequency Sample
Period

Sectoral
Coverage

Weight
Used to
Calculate
Within
Plant
Changes1

Average
Fraction
from
Within
Plant
Changes

Fraction
of
Activity2

from
Entrants
(t)

Fraction
of
Activity
from
Exits 
(t-k)

Relative
Productivity
of Births (t)
to Deaths
(t-k)

Study

U.S. 5-year 1972-87 Selected
Mfg
Industries
(23)

Output 
(t-k)

0.37    N/A N/A N/A Baily,
Hulten and
Campbell
(1992)

U.S. 5-year 1977-87 All Mfg
Industries

Output 
(t-k)

0.23 0.08 0.10 1.05 Haltiwanger 
(1997)

U.S. 10-year 1977-87 All Mfg
Industries

Output 
(t-k)

0.54 0.16 0.21 1.11 Haltiwanger 
(1997)

Taiwan3 5-year 1981-91 Selected
Mfg
Industries
(9)

Output
(avg. of
(t-k) and
t)

0.94
(Median =
0.63)

N/A N/A N/A Aw, Chen
and Roberts
(1997)

Columbia Annual 1978-86 Selected
Mfg
Industries
(5) 

Input
Index4

(avg of (t-
k) and t)

1.00 N/A 0.05 1.05 Liu and
Tybout
(1996)



Table 1 (continued) 
B.  Labor Productivity Growth Decompositions

Country Frequency Sample
Period

Sectoral
Coverage

Weight
Used to
Calculate
Within
Plant
Changes

Average
Fraction
from
Within
Plant
Changes

Fraction
of
Activity
from
Entrants
(t)

Fraction
of
Activity
from
Exits 
(t-k)

Relative
Productivity
of Births (t)
to Deaths
(t-k)

Study

U.S. 10-year 1977-87 All Mfg
Industries

Employ-
ment (t-k)

0.79 0.26 0.28 1.42 Baily,
Bartelsman
and
Haltiwanger
(1996)

U.S. Annual 1972-88 All Mfg
Industries

Manhours
(t-k)

1.20 0.01 0.02 1.03 Baily,
Bartelsman
and
Haltiwanger
(1997)

Israel 3-year 1979-88 All Mfg
Industries

Employ-
ment (avg
of (t-k)
and t)

0.83 0.08 0.06 1.20 Griliches
and Regev
(1995)

Notes: 1.  Within contribution is measured as the weighted sum of plant-level productivity growth as a fraction of aggregate index of
productivity growth.  In all cases, output above refers to gross output.   2.  Activity is measured in the same units as weight (e.g.,
employment or output).  3.  Simple average (and simple median) of industry-based results reported. 4.  The input index is a
geometric mean of inputs using estimated factor elasticities.



Table 2: Sensitivity of Decomposition Results to Business Cycle and Sector   
Five-year Frequency

1977-1982 1982-1987

Sectoral
Coverage

Multifactor
Productivity
Growth

Fraction from
Within Plant
Changes

Multifactor
Productivity
Growth

Fraction from
Within Plant
Changes

Study

All Mfg
Industries

 2.43 -0.12  8.26  0.58 Haltiwanger
(1997)

Selected Mfg
Industries
(23)

 2.39    -0.46    15.63  0.87 Baily,
Hulten and
Campbell
(1992)

Blast
Furnaces
(SIC 3312)

-3.66  2.15 18.30  1.06 Baily,
Hulten and
Campbell
(1992)

Telephone
and
Telegraph
Equipment
(SIC 3661)

14.58  0.78 13.19  0.86 Baily,
Hulten and
Campbell
(1992)

Notes: Weight for within calculation from both studies is initial gross output share for the plant
in each industry.  Results aggregated across industries are based upon weighted average with
weight for this purpose equal to the average of nominal gross output for the industry.



Table 3.  Gross Reallocation of Employment, Output, Equipment and Structures
Ten-year Changes from 1977-87

Measure Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to
Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Fraction of
Excess
Reallocation
Within 4-
digit Industry

Real Gross
Output

49.4 0.44 34.4 0.61 0.80

Employment 39.4 0.58 45.8 0.62 0.75

Capital
Equipment

46.1 0.42 37.1 0.51 0.71

Capital
Structures

44.9 0.44 48.4 0.42 0.69

Notes: See text for details of construction of output, equipment and structures measures.
Source: Tabulations from the CM.                                               



Table 4:  Decomposition of Multifactor and Labor Productivity Growth, 1977-87

Panel A: Method 1

Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

Multifactor
Productivity

Gross Output 10.24 0.48 -0.08 0.34 0.26

Labor
Productivity
(per hour)

Gross Output 25.56 0.45 -0.13 0.37 0.31

Labor
Productivity
(per hour)

Manhours 21.32 0.77 0.08 -0.14 0.29

Labor
Productivity
(per worker)

Employment 23.02 0.74 0.08 -0.11 0.29

Panel B: Method 2

Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

Multifactor
Productivity

Gross Output 10.24 0.65 0.10 -- 0.25

Labor
Productivity
(per hour)

Gross Output 25.56 0.64 0.06 -- 0.31

Labor
Productivity
(per hour)

Manhours 21.32 0.70 0.00 -- 0.30

Labor
Productivity
(per worker)

Employment 23.02 0.69 0.01 -- 0.30

Source: Tabulations from the CM.                                               



Table 5: Correlation Between Plant-Level Productivity, Output, and Input Growth, 1977-87 (Continuing Plants)

Multifactor
Productivity

Labor
Productivity
(per hour)

Labor
Productivity
(per
worker)

Output Employment Manhours Capital
Equipment

Capital
Structures

Multifactor
Productivity

1.00

Labor
Productivity
(per hour)

0.41 1.00

Labor
Productivity
(per worker)

0.38 0.93 1.00

Output 0.24 0.47 0.52 1.00

Employment -0.03 -0.17 -0.17 0.76 1.00

Manhours -0.04 -0.22 -0.12 0.75 0.96 1.00

Capital
Equipment

-0.06 0.16 0.18 0.55 0.49 0.49 1.00

Capital
Structures

-0.07 0.15 0.17 0.52 0.46 0.46 0.76 1.00

Capital
Intensity

-0.03 0.34 0.30 0.06 -0.16 -0.19 0.71 0.63

Source: Tabulations from the CM.



Table 6: Cross-Sectional Decompositions of Productivity By Year

1977 1987

Measure Weight Overall     p2 Cross Overall     p2 Cross

Multifactor
Productivity

Gross Output 1.62 1.57 0.05 1.73 1.67 0.06

Labor
Productivity
(per hour)

Manhours 4.12 4.01 0.11 4.37 4.21 0.15

Labor
Productivity
(per
worker)

Employment 4.80 4.67 0.13 5.06 4.90 0.16

Source: Tabulations from the CM.



Table 7:  Decomposition of Multifactor and Labor Productivity Growth Over Subperiods

Panel A: Method 1

Years Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

1977-82 Multifactor
Productivity

Gross
Output

2.70 -0.09 -0.33 1.16 0.25

1977-82 Labor
Productivity 

Manhours 2.54 1.22 0.85 -1.27 0.20

1982-87 Multifactor
Productivity

Gross
Output

7.32 0.52 -0.18 0.51 0.14

1982-87 Labor
Productivity 

Manhours 18.67 0.83 0.13 -0.15 0.19

1987-92 Multifactor
Productivity

Gross
Output

3.30 -0.06 -0.39 1.10 0.35

1987-92 Labor
Productivity 

Manhours 7.17 0.94 0.33 -0.49 0.21

Panel B: Method 2

Years Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

1977-82 Multifactor
Productivity

Gross
Output

2.70 0.49 0.26 -- 0.25

1977-82 Labor
Productivity 

Manhours 2.54 0.59 0.21 -- 0.20

1982-87 Multifactor
Productivity

Gross
Output

7.32 0.78 0.08 -- 0.14

1982-87 Labor
Productivity 

Manhours 18.67 0.75 0.03 -- 0.21

1987-92 Multifactor
Productivity

Gross
Output

3.30 0.49 0.17 -- 0.34

1987-92 Labor
Productivity 

Manhours 7.17 0.70 0.08 -- 0.22

Note: Labor Productivity is per hour.
Source: Tabulations from the CM.                                               



Table 8: Correlation Between Plant-Level Productivity, Output, and Input Growth 
for Subperiods (Continuing Plants)

                                                 Panel A:  Multifactor Productivity 

1977-82 1982-87 1987-92

Output  0.29  0.23  0.24

Manhours -0.07 -0.08 -0.07

Capital Intensity  0.07 -0.00 -0.08

Labor Productivity
(per hour)

 0.45  0.41  0.40

                                                 Panel B: Labor Productivity (per hour)

1977-82 1982-87 1987-92

Output  0.52  0.50  0.53

Manhours -0.25 -0.26 -0.27

Capital Intensity  0.38  0.39  0.29

Source: Tabulations from the CM.



Table 9: Relative Productivity for Continuers, Exiters and Entrants, 1977-87

Panel A: Output Shares and Relative Productivity

Shares Relative Productivity

Measure Weight Exiting
Plants 
(t-k)

Entering
Plants
(t)

Exiting
Plants
 (t-k)

Entering
Plants
(t)

Continuing
Plants (t-k)

Continuing 
Plants (t)

Multifactor
Productivity

Gross
Output

0.22 0.21 0.96 1.09 1.00 1.10

Labor
Productivity
(per hour)

Manhours 0.25 0.21 0.83 1.11 1.00 1.20

Labor
Productivity
(per
worker)

Employ-
ment

0.25 0.21 0.82 1.11 1.00 1.21

Panel B: Relative Productivity of Plants in 1987 for Entrants by Entry Cohort

Plants that entered 
between:

Measure Weight 1978-82 1983-87

Multifactor
Productivity 

Gross
Output

1.10 1.07

Labor
Productivity
(per hour) 

Manhours 1.16 1.04

Labor
Productivity
(per
worker) 

Employ-
ment

1.16 1.05

Source: Tabulations from the CM.



Table 10: Regression Results Concerning Net Entry, 1977-87 

Panel A: Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 1977 ($

)
Entry Dummy in 1987 (*) 1987 Year Effect F-test on $

=* (p-value)
Multifactor Productivity -0.019

(0.002)
0.003
(0.002)

0.098
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.150
(0.003)

-0.075
(0.003)

0.191
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.162
(0.003)

-0.086
(0.003)

0.208
(0.002)

0.0001

Panel B: Regression Results Distinguishing Between Entering Cohorts

Measure Entry Dummy in 1987
interacted with Dummy
for 1977-82 Cohort ( 0

)

Entry Dummy in 1987 
interacted with Dummy
for 1982-87 Cohort ( :

)

F-test on 
0

 = :(p-value)

Multifactor Productivity 0.016
(0.002)

-0.010
(0.002)

0.0001

Labor Productivity 
(per hour)

-0.020
(0.004)

-0.123
(0.004)

0.0001

Labor Productivity 
(per worker)

-0.032
(0.004)

-0.132
(0.004)

0.0001

Notes: Results in panel A are based upon regression of pooled 1977 and 1987 data with dependent variable the measure of
productivity (in logs) and the explanatory variables including 4-digit industry effects, year effects,  an exit dummy in 1977 and an
entry dummy in 1987.  The results in panel B use the same specification but interact the entry dummy with entering cohort
dummies.  In panel B, the exit dummy and year effect dummy are not shown as they are the same as in panel A.   All results are
weighted regressions with gross output weights in regressions using multifactor productivity, hours weights in labor productivity
per hour regressions, and employment weights in labor productivity per worker regressions.  Standard errors in parentheses.



Table 11:  Regression Results Distinguishing Between Selection and Learning Effects using 1972-77 Entering Cohort

Measure Exit
Dummy
in 1977
for
Entering
Cohort
( "

)

Exit Dummy
in 1977 for
Other
Exiting
Plants ((

)

Survival
Dummy in
1977 for
Entering
Cohort ( 2

)

Survival
Dummy in
1987 for
Entering
Cohort ( 8

)

1987
Year
Effect

F-test on 

"

 = ((p-value)

 F-test on 

"

 = 2(p-value)

F-test on
2

 = 8(p-value)

Multifactor
Productivity

-0.024
(0.004)

-0.019
(0.002)

-0.017
(0.003)

0.018
(0.003)

0.095
(0.001)

0.238 0.184 0.0001

Labor Productivity 
(per hour)

-0.182
(0.007)

-0.149
(0.003)

-0.058
(0.006)

-0.016
(0.005)

0.189
(0.002)

0.0001 0.0001 0.0001

Labor Productivity 
(per worker)

-0.215
(0.007)

-0.158
(0.003)

-0.072
(0.006)

-0.017
(0.005)

0.204
(0.002)

0.0001 0.0001 0.0001

Notes: Results are based upon regression of pooled 1977 and 1987 data with dependent variable the measure of productivity and the
explanatory variables including 4-digit industry effects, year effects,  an entry dummy in 1987, the exit dummy interacted with
whether the plant is in the 72-77 entering cohort and a surviving dummy for the 72-77 entering cohort interacted with the year
effects.  All results are weighted regressions with gross output weights in regressions using multifactor productivity, hours weights
in labor productivity per hour regressions, and employment weights in labor productivity per worker regressions.  Standard errors
in parentheses.
Source: Tabulations from the CM.                                               



Table 12: Regression Results on Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 
Beginning Year ($

)

Entry Dummy in 
Ending Year (*)

End Year
Effect

F- test on $

 = *(p-value)

                                                                           Panel A: 1977-82

Multifactor Productivity -0.047
(0.002)

0.005
(0.002)

0.021
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.164
(0.004)

-0.140
(0.004)

0.022
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.187
(0.004)

-0.131
(0.004)

-0.009
(0.002)

0.0001

                                                                           Panel B: 1982-87

Multifactor Productivity -0.017
(0.002)

-0.005
(0.002)

0.071
(0.001)

0.0002

Labor Productivity 
(per hour)

-0.193
(0.004)

-0.121
(0.004)

0.169
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.204
(0.004)

-0.130
(0.004)

0.211
(0.002)

0.0001

                                                                           Panel C: 1987-92

Multifactor Productivity -0.056
(0.002)

0.009
(0.002)

0.025
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.179
(0.004)

-0.140
(0.004)

0.064
(0.002)

0.0001



Labor Productivity 
(per worker)

-0.192
(0.004)

-0.126
(0.004)

0.083
(0.002)

0.0001

Table 13:  Regression Results Distinguishing Between Selection and Learning Effects using Entering Cohort

Measure Exit Dummy
in Start for
Entering ("

)

Exit Dummy
in Start for
Other Exiting 
( (

)

Survival Dummy
in Start for
Entering  (2

)

Survival
Dummy in End
for Entering  (8

)

F-test on 

"

 = ((p-value)

F-test on 
 "
 = 2(p-value)

F-test on
2

 = 8(p-value)

                                                                              Panel A: 1977-82   (Start=1977, End=1982)

Multifactor 
Productivity

-0.050
(0.005)

-0.047
(0.003)

-0.011
(0.003)

0.023
(0.003)

0.662 0.0001 0.0001

Labor Productivity 
(per hour)

-0.190
(0.008)

-0.164
(0.005)

-0.069
(0.005)

-0.035
(0.005)

0.005 0.0001 0.0001

Labor Productivity 
(per worker)

-0.231
(0.008)

-0.184
(0.005)

-0.089
(0.005)

-0.032
(0.005)

0.0001 0.0001 0.0001

                                                                              Panel B: 1982-87   (Start=1982, End=1987)

Multifactor 
Productivity

-0.039
(0.005)

-0.014
(0.002)

-0.017
(0.003)

0.001
(0.003)

0.0001 0.0001 0.0001

Labor Productivity 
(per hour)

-0.306
(0.008)

-0.175
(0.004)

-0.063
(0.006)

-0.045
(0.005)

0.0001 0.0001 0.019

Labor Productivity 
(per worker)

-0.313
(0.008)

-0.186
(0.004)

-0.061
(0.006)

-0.052
(0.005)

0.0001 0.0001 0.216

                                                                              Panel C: 1987-92   (Start=1987, End=1992)

Multifactor 
Productivity

-0.049
(0.005)

-0.060
(0.003)

-0.017
(0.003)

0.043
(0.003)

0.048 0.0001 0.0001



Labor Productivity 
(per hour)

-0.254
(0.008)

-0.170
(0.004)

-0.097
(0.005)

-0.057
(0.005)

0.0001

Labor Productivity 
(per worker)

-0.274
(0.007)

-0.183
(0.004)

-0.101
(0.005)

-0.050
(0.005)

0.0001

Table 14:  Results of Using Automatch to Improve Longitudinal Linkages

Panel A: Summary Statistics

Continuers Based on
Original Linkages

Additional
Continuers After
Improved
Linkages

Exits After
Improved
Linkages 

Entrants
After
Improved
Linkages

Number of Establishments 59,011 9,447 44,281 61,649

Employment Mean: 1987 5.2 5.1 3.7

Employment Mean: 1992 5.0 4.8 3.4

Panel B: Impact on Gross Employment Flows

Original Matched File File After
Matching
Name/Address

Change Percentage
Change

Employment at Births 231,094 192,016 -39,078 -16.9

Employment at Deaths 179,111 139,408 -39,703 -22.2

Job Creation Rate 56.2 50.9 -5.3 -9.4

Job Destruction  Rate 49.3 44.2 -5.1 -10.3

Percent of Creation 
From Entry

82.6 75.8 -6.8 -8.2

Percent of Destruction 
From Exits

73 63.5 -9.5 -13.0

Net Employment Growth Rate 6.9 6.7 -0.2 -2.9

Source: Tabulations from Censuses of Service Industries



Table 15: Gross Reallocation of Employment and Output for Automobile Repair Shops
 Panel A: Five-year Changes from 1987-92, Employment

Industry Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Excess
Reallocation
Within Industry

Automobile
Repair Shops
(SIC=753)

50.9 75.8 44.2 63.5 88.4

Top, Body, and
Upholstery
Repair Shops
and Paint Shops
(SIC=7532)

44.2 69.3 42.9 59.1 85.8

Auto Exhaust
System Repair
Shops
(SIC=7533)

46.0 69.5 37.1 55.3 74.2

Tire Retreading
and Repair
Shops
(SIC=7534)

53.2 79.0 57.5 82.1 106.4

Automotive
Glass
Replacement
Shops
(SIC=7536)

60.3 79.6 38.9 51.7 77.8

Automotive
Transmission
Repair Shops
(SIC=7537)

38.9 70.4 46.1 61.4 77.8

General
Automotive
Repair Shops
(SIC=7538)

58.3 80.0 45.3 67.4 90.6

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

43.6 76.2 43.9 61.8 87.2

Source: Tabulations from Censuses of Service Industries



Table 15 (continued)
Panel B: Five-year Changes from 1987-92, Output

Industry Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Excess
Reallocation
Within Industry

Automobile
Repair Shops
(SIC=753)

51.8 75.8 40.3 61.3 80.6

Top, Body, and
Upholstery
Repair Shops
and Paint Shops
(SIC=7532)

44.7 68.8 38.5 57.1 77.0

Auto Exhaust
System Repair
Shops
(SIC=7533)

45.2 71.2 31.9 55.7 63.8

Tire Retreading
and Repair
Shops
(SIC=7534)

53.6 79.7 51.2 80.3 102.4

Automotive
Glass
Replacement
Shops
(SIC=7536)

59.9 79.8 38.7 45.3 77.4

Automotive
Transmission
Repair Shops
(SIC=7537)

37.9 74.5 42.7 57.5 75.8

General
Automotive
Repair Shops
(SIC=7538)

59.9 79.3 41.2 65.4 82.4

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

42.8 78.3 43.4 59.3 85.6

Source: Tabulations from Censuses of Service Industries



Table 16:  Gross Reallocation of Employment and Output by Size Class for Automobile Repair Shops
Panel A: Five-year Changes from 1987-92, Employment

Average
Employ-
ment

Number
of
Establish-
ments.

Average
number of
Employees

Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to
Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Net Job
Flow Rate
of Size
Class

1 - 4 123,378 224,309 71.7 85.2 53.3 77.1 18.4

5 - 9  22,163 145,528 36.5 63.1 36.5 51.3 0.0

10 - 19    6,683   86,647 28.0 52.0 33.1 40.2 -5.1

20 - 49    1,236   33,230 32.6 56.0 39.9 40.5 -7.3

50 +         88     7,624 54.6 65.3 66.6 61.9 -12.0

Panel B: Five-year Changes from 1987-92, Output

Average
Employ-
ment

Number
of
Establish-
ments.

Average
number of
Employees

Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to
Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Net
Output
Flow Rate
of Size
Class

1 - 4 123,378 224,309 73.9 84.5 47.0 75.5 26.9

5 - 9  22,163 145,528 35.3 64.1 35.2 48.7 0.1

10 - 19    6,683   86,647 27.5 52.4 32.4 38.9 -4.9

20 - 49    1,236   33,230 34.3 52.1 34.9 40.5 -0.6

50 +         88     7,624 44.1 58.8 50.8 54.5 -6.7

Source: Tabulations from Censuses of Service Industries



Table 17:  Decomposition of Labor Productivity Growth, 1987-92

Panel A: Method 1

Industry Average 
number of 
Employees

Overall
Growth

Within
Effect

Between
Effect

Cross
Effect

Total
Continuer
Effect

Net Entry
Effect

Auto Repair
Shops
(SIC=753)

497,336 2.43 2.41 4.58 -7.29 -0.30 2.73

Top, Body,
and Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

163,302 4.16 3.24 5.81 -8.13 0.92 3.24

Auto Exhaust
System Repair
Shops 
(SIC=7533)

  22,112 3.47 5.72 4.02 -9.80 -0.06 3.54

Tire
Retreading and
Repair Shops
(SIC=7534)

  12,874 -1.34 -2.99 5.23 -2.78 -0.54 -0.81

Automotive
Glass
Replacement
Shops
(SIC=7536)

  19,816 -3.55 -0.43 1.50 -4.57 -3.50 -0.05

Automotive
Transmission
Repair Shops
(SIC=7537)

  24,507 0.79 1.26 4.93 -8.35 -2.16 2.96

General
Automotive
Repair Shops
(SIC=7538)

213,768 2.36 2.38 3.90 -6.79 -0.51 2.87

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

40,956 -1.22 1.36 4.85 -7.67 -1.46 0.24



Table 17, Panel B: Method 2

Industry Average 
number of
Employees

Overall
Growth

Within
Effect

Between
Effect

Cross
Effect 

Total
Continuer
Effect

Net Entry
Effect 

Automobile
Repair Shops
(SIC=753)

497,336 2.43 -1.24 1.01    -- -0.23 2.66

Top, Body,
and Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

163,302 4.16 -0.82 1.84    -- 1.02 3.15

Auto Exhaust
System Repair
Shops
(SIC=7533)

  22,112 3.47 0.81 -0.73    -- 0.08 3.39

Tire
Retreading and
Repair Shops
(SIC=7534)

  12,874 -1.34 -4.37 3.85     -- -0.52 -0.81

Automotive
Glass
Replacement
Shops
(SIC=7536)

  19,816 -3.55 -2.72 -1.16     -- -3.88 0.33

Automotive
Transmission
Repair Shops
(SIC=7537)

  24,507 0.79 -2.92 0.76    -- -2.16 2.95

General
Automotive
Repair Shops
(SIC=7538)

213,768 2.36 -1.02 0.59    -- -0.43 2.79

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

40,956 -1.22 -2.48 0.99    -- -1.49 0.28

Source: Tabulations from the Censuses of Service Industries.                                               



Table 18: Correlation Between Plant-Level Productivity, Output, and Input Growth, 1987-92
(Continuing Plants; SIC 753)

Change in
Labor
Productivity
(per worker)

Change in
Output

Change in
Employment

Employment  
in 1987

Employment  
in 1992

Change in
Labor
Productivity
(per worker) 

1

Change in
Output

0.51 1

Change in
Employment

-0.39 0.60 1

Employment 
in 1987

0.06 -0.18 -0.24 1

Employment 
in 1992

-0.10 0.11 0.21 0.72 1

Source: Tabulations from Census of Service Industries



Table 19: Cross-Sectional Decompositions of Productivity by Year

Industry Year Overall P-Bar Cross

Automobile Repair
Shops (SIC=753)

1987 3.92 3.69 0.23

1992 3.95 3.69 0.25

Top, Body, and
Upholstery Repair
Shops and Paint
Shops (SIC=7532)

1987 3.75 3.68 0.07

1992 3.77 3.69 0.08

Auto Exhaust System
Repair Shops
(SIC=7533)

1987 3.96 3.95 0.01

1992 4.02 4.02 0.00

Tire Retreading and
Repair Shops
(SIC=7534)

1987 3.96 3.95 0.01

1992 3.91 3.90 0.01

Automotive Glass
Replacement Shops
(SIC=7536)

1987 3.95 3.95 0.01

1992 3.96 3.95 0.01

Automotive
Transmission Repair
Shops (SIC=7537)

1987 3.67 3.66 0.01

1992 3.70 3.70 0.01

General Automotive
Repair Shops
(SIC=7538)

1987 3.76 3.65 0.11

1992 3.77 3.63 0.13

Automotive Repair
Shops Not Elsewhere
Classified
(SIC=7539)

1987 3.71 3.69 0.02

1992 3.75 3.74 0.01

Source: Tabulations from Censuses of Service Industries



Table 20: Employment Shares and Relative Labor Productivity, 1987-92

Industry Shares Relative Productivity

Exiting Plants 
(t-k)

Entering
Plants (t)

Exiting
Plants
 (t-k)

Entering
Plants (t)

Continuing
Plants (t-k)

Continuing 
Plants (t)

Automobile
Repair Shops
(SIC=753)

0.39 0.32 0.84 0.93 1.00 1.00

Top, Body,
and
Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

0.27 0.32 0.80 0.92 1.00 1.02

Auto Exhaust
System Repair
Shops
(SIC=7533)

0.22 0.31 0.81 0.96 1.00 1.00

Tire
Retreading
and Repair
Shops
(SIC=7534)

0.49 0.48 0.86 0.85 1.00 0.99

Automotive
Glass
Replacement
Shops
(SIC=7536)

0.23 0.44 0.78 0.86 1.00 0.96

Automotive
Transmission
Repair Shops
(SIC=7537)

0.28 0.30 0.80 0.90 1.00 0.97

General
Automotive
Repair Shops
(SIC=7538)

0.38 0.45 0.86 0.94 1.00 1.00

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

0.30 0.35 0.90 0.92 1.00 0.98

Source: Tabulations from the Censuses of Service Industries.



Table 21: Regression Results on Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 
Beginning Year ($)

Entry Dummy in 
Ending Year (*)

End Year
Effect

F- test on $ = *
(p-value)

                                                                1987-92 for SIC 753

Labor Productivity
(Weighted by
Employment)

-0.153 
(0.004)

-0.068
 (0.003)

0.001
(0.003)

0.0001

Source: Tabulations from Censuses of Service Industries


